983 resultados para Wild type TTR
Resumo:
Background: Hypertrophic cardiomyopathy (HCM) is a common cardiac disease caused by a range of genetic and acquired disorders. The most common cause is genetic variation in sarcomeric proteins genes. Current ESC guidelines suggest that particular clinical features (‘red flags’) assist in differential diagnosis. Aims: To test the hypothesis that left ventricular (LV) systolic dysfunction in the presence of increased wall thickness is an age-specific ‘red flag’ for aetiological diagnosis and to determine long-term outcomes in adult patients with various types of HCM. Methods: A cohort of 1697 adult patients with HCM followed at two European referral centres were studied. Aetiological diagnosis was based on clinical examination, cardiac imaging and targeted genetic and biochemical testing. Main outcomes were: all-cause mortality or heart transplantation (HTx) and heart failure (HF) related-death. All-cause mortality included sudden cardiac death or equivalents, HF and stroke-related death and non-cardiovascular death. Results: Prevalence of different aetiologies was as follows: sarcomeric HCM 1288 (76%); AL amyloidosis 115 (7%), hereditary TTR amyloidosis 86 (5%), Anderson-Fabry disease 85 (5%), wild-type TTR amyloidosis 48 (3%), Noonan syndrome 15 (0.9%), mitochondrial disease 23 (1%), Friedreich’s ataxia 11 (0.6%), glycogen storage disease 16 (0.9%), LEOPARD syndrome 7 (0.4%), FHL1 2 (0.1%) and CPT II deficiency 1 (0.1%). Systolic dysfunction at first evaluation was significantly more frequent in phenocopies than sarcomeric HCM [105/409 (26%) versus 40/1288 (3%), (p<0.0001)]. All-cause mortality/HTx and HF-related death were higher in phenocopies compared to sarcomeric HCM (p<0.001, respectively). When considering specific aetiologies, all-cause mortality and HF-related death were higher in cardiac amyloidosis (p<0.001, respectively). Conclusion: Systolic dysfunction at first evaluation is more common in phenocopies compared to sarcomeric HCM representing an age-specific ‘red flag’ for differential diagnosis. Long-term prognosis was more severe in phenocopies compared to sarcomeric HCM and when comparing specific aetiologies, cardiac amyloidosis showed the worse outcomes.
Resumo:
The most frequent form of inherited amyloidoses is associated with mutations in the transthyretin (TTR) gene coding for 127-amino acid residues of four identical, noncovalently linked subunits that form a pair of dimers in the plasma protein complex. Amyloid fibrils containing the variant and to a lesser extent the wild-type form of the TTR molecule are deposited in various organs, including peripheral nerves and the myocardium, with polyneuropathy and cardiomyopathy as major clinical manifestations. So far, more than 40 distinct amino acid substitutions distributed throughout the TTR sequence over 30 positions have been found to be correlated with an increased amyloidogenicity of TTR. Most of these amyloidogenic amino acid substitutions are suspected to alter the conformation and stability of the monomer. Here we identify and characterize by protein and DNA analysis a novel amyloidogenic Val-20 to Ile mutation in a German three-generation family. The index patient suffered from severe amyloid cardiomyopathy at the age of 60. Conformational stability and unfolding behavior of the Ile-20 monomer in urea gradients was found to be almost indistinguishable from that of wild-type TTR. In contrast, tetramer stability was significantly reduced in agreement with the expected change in the interactions between the two opposing dimers via the side chain of Ile-20. Our observations provide strong evidence for the view that amyloidogenic amino acid substitutions in TTR facilitate the conversion of tetrameric TTR complexes into those conformational intermediates of the TTR folding pathway that have an intrinsic amyloidogenic potential.
Exercise Increases Pancreatic β-cell Viability In A Model Of Type 1 Diabetes Through Il-6 Signaling.
Resumo:
Type 1 diabetes (T1D) is provoked by an autoimmune assault against pancreatic β cells. Exercise training enhances β-cell mass in T1D. Here, we investigated how exercise signals β cells in T1D condition. For this, we used several approaches. Wild-type and IL-6 knockout (KO) C57BL/6 mice were exercised. Afterward, islets from control and trained mice were exposed to inflammatory cytokines (IL-1β plus IFN-γ). Islets from control mice and β-cell lines (INS-1E and MIN6) were incubated with serum from control or trained mice or medium obtained from 5-aminoimidazole-4 carboxamide1-β-d-ribofuranoside (AICAR)-treated C2C12 skeletal muscle cells. Subsequently, islets and β cells were exposed to IL-1β plus IFN-γ. Proteins were assessed by immunoblotting, apoptosis was determined by DNA-binding dye propidium iodide fluorescence, and NO(•) was estimated by nitrite. Exercise reduced 25, 75, and 50% of the IL-1β plus IFN-γ-induced iNOS, nitrite, and cleaved caspase-3 content, respectively, in pancreatic islets. Serum from trained mice and medium from AICAR-treated C2C12 cells reduced β-cell death, induced by IL-1β plus IFN-γ treatment, in 15 and 38%, respectively. This effect was lost in samples treated with IL-6 inhibitor or with serum from exercised IL-6 KO mice. In conclusion, muscle contraction signals β-cell survival in T1D through IL-6.-Paula, F. M. M., Leite, N. C., Vanzela, E. C., Kurauti, M. A., Freitas-Dias, R., Carneiro, E. M., Boschero, A. C., and Zoppi, C. C. Exercise increases pancreatic β-cell viability in a model of type 1 diabetes through IL-6 signaling.
Resumo:
Oropouche virus (OROV) is a member of the Orthobunyavirus genus in the Bunyaviridae family and a prominent cause of insect-transmitted viral disease in Central and South America. Despite its clinical relevance, little is known about OROV pathogenesis. To define the host defense pathways that control OROV infection and disease, we evaluated OROV pathogenesis and immune responses in primary cells and mice that were deficient in the RIG-I-like receptor signaling pathway (MDA5, RIG-I, or MAVS), downstream regulatory transcription factors (IRF-3 or IRF-7), IFN-β, or the receptor for type I IFN signaling (IFNAR). OROV replicated to higher levels in primary fibroblasts and dendritic cells lacking MAVS signaling, the transcription factors IRF-3 and IRF-7, or IFNAR. In mice, deletion of IFNAR, MAVS, or IRF-3 and IRF-7 resulted in uncontrolled OROV replication, hypercytokinemia, extensive liver damage, and death whereas wild-type (WT) congenic animals failed to develop disease. Unexpectedly, mice with a selective deletion of IFNAR on myeloid cells (CD11c Cre(+) Ifnar(f/f) or LysM Cre(+) Ifnar(f/f)) did not sustain enhanced disease with OROV or La Crosse virus, a closely related encephalitic orthobunyavirus. In bone marrow chimera studies, recipient irradiated Ifnar(-/-) mice reconstituted with WT hematopoietic cells sustained high levels of OROV replication and liver damage, whereas WT mice reconstituted with Ifnar(-/-) bone marrow were resistant to disease. Collectively, these results establish a dominant protective role for MAVS, IRF-3 and IRF-7, and IFNAR in restricting OROV virus infection and tissue injury, and suggest that IFN signaling in non-myeloid cells contributes to the host defense against orthobunyaviruses. Oropouche virus (OROV) is an emerging arthropod-transmitted orthobunyavirus that causes episodic outbreaks of a debilitating febrile illness in humans in countries of South and Central America. The continued expansion of the range and number of its arthropod vectors increases the likelihood that OROV will spread into new regions. At present, the pathogenesis of OROV in humans or other vertebrate animals remains poorly understood. To define cellular mechanisms of control of OROV infection, we performed infection studies in a series of primary cells and mice that were deficient in key innate immune genes involved in pathogen recognition and control. Our results establish that a MAVS-dependent type I IFN signaling pathway has a dominant role in restricting OROV infection and pathogenesis in vivo.
Resumo:
Bacterial type III secretion systems deliver protein virulence factors to host cells. Here we characterize the interaction between HrpB2, a small protein secreted by the Xanthomonas citri subsp. citri type III secretion system, and the cytosolic domain of the inner membrane protein HrcU, a paralog of the flagellar protein FlhB. We show that a recombinant fragment corresponding to the C-terminal cytosolic domain of HrcU produced in E. coli suffers cleavage within a conserved Asn264-Pro265-Thr266-His267 (NPTH) sequence. A recombinant HrcU cytosolic domain with N264A, P265A, T266A mutations at the cleavage site (HrcU(AAAH)) was not cleaved and interacted with HrpB2. Furthermore, a polypeptide corresponding to the sequence following the NPTH cleavage site also interacted with HrpB2 indicating that the site for interaction is located after the NPTH site. Non-polar deletion mutants of the hrcU and hrpB2 genes resulted in a total loss of pathogenicity in susceptible citrus plants and disease symptoms could be recovered by expression of HrpB2 and HrcU from extrachromossomal plasmids. Complementation of the Delta hrcU mutant with HrcU(AAAH) produced canker lesions similar to those observed when complemented with wild-type HrcU. HrpB2 secretion however, was significantly reduced in the Delta hrcU mutant complemented with HrcU(AAAH), suggesting that an intact and cleavable NPTH site in HrcU is necessary for total functionally of T3SS in X. citri subsp. citri. Complementation of the Delta hrpB2 X. citri subsp. citri strain with a series of hrpB2 gene mutants revealed that the highly conserved HrpB2 C-terminus is essential for T3SS-dependent development of citrus canker symptoms in planta.
Resumo:
The high affinity receptor for human granulocyte-macrophage colony-stimulating factor (GM-CSF) consists of a cytokine-specific alpha-subunit (hGMR alpha) and a common signal-transducing beta-subunit (hpc) that is shared with the interleukin-3 and -5 receptors, We have previously identified a constitutively active extracellular point mutant of hpc, I374N, that can confer factor independence on murine FDC-P1 cells but not BAF-B03 or CTLL-2 cells (Jenkins, B. J., D'Andrea, R. J., and Gonda, T. J. (1995) EMBO J. 14, 4276-4287), This restricted activity suggested the involvement of cell type-specific signaling molecules in the activation of this mutant. We report here that one such molecule is the mouse GMR alpha (mGMR alpha) subunit, since introduction of mGMR alpha, but not hGMR alpha, into BAF-B03 or CTLL-2 cells expressing the I374N mutant conferred factor independence, Experiments utilizing mouse/human chimeric GMR alpha subunits indicated that the species specificity lies in the extracellular domain of GMRa. Importantly, the requirement for mGMR alpha correlated with the ability of I374N (but not wild-type hpc) to constitutively associate with mGMRa. Expression of I374N in human factor-dependent UT7 cells also led to factor-independent proliferation, with concomitant up-regulation of hGMR alpha surface expression. Taken together, these findings suggest a critical role for association with GMR alpha in the constitutive activity of I374N.
Resumo:
Angiotensin II (Ang II) and vascular endothelial growth factor (VEGF) are important mediators of kidney injury in diabetes. Acute hyperglycemia increased synthesis of intrarenal Ang I and Ang II and resulted in activation of both Ang II receptors, AT1 and AT2, in the kidney. Losartan (specific AT1 antagonist) or PD123319 (specific AT2 antagonist) did not affect hyperglycemia but prevented activation of renal AT1 and AT2, respectively. In murine renal cortex, acute hyperglycemia increased VEGF protein but not mRNA content after 24 h, which suggested translational regulation. Blockade of AT2, but not AT1, prevented increase in VEGF synthesis by inhibiting translation of VEGF mRNA in renal cortex. Acute hyperglycemia increased VEGF expression in wild type but not in AT2 knockout mice. Binding of heterogeneous nuclear ribonucleoprotein K to VEGF mRNA, which stimulates its translation, was prevented by blockade of AT2, but not AT1. The Akt-mTOR-p70(S6K) signaling pathway, involved in the activation of mRNA translation, was activated in hyperglycemic kidneys and was blocked by the AT2 antagonist. Elongation phase is an important step of mRNA translation that is controlled by elongation factor 1A (eEF1A) and 2 (eEF2). Expression of eEF1A and activity of eEF2 was higher in kidney cortex from hyperglycemic mice and only the AT2 antagonist prevented these changes. To assess selectivity of translational control of VEGF expression, we measured expression of fibronectin (FN) and laminin beta 1 (lam beta 1): acute hyperglycemia increased FN expression at both protein and mRNA levels, indicating transcriptional control, and did not affect the expression of lam beta 1. To confirm results obtained with PD123319, we induced hyperglycemia in AT2 knockout mice and found that in the absence of AT2, translational control of VEGF expression by hyperglycemia was abolished. Our data show that acute hyperglycemia stimulates Ang II synthesis in murine kidney cortex, this leads to AT2 activation and stimulation of VEGF mRNA translation, via the Akt-mTOR-p70(S6K) signaling pathway. Our data show that exclusive translational control of protein expression in the kidney by acute hyperglycemia is not a general phenomenon, but do not prove that it is restricted to VEGF. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The complete genome sequence of wild-type rabies virus (RABV) isolated from a wild Brazilian hoary fox (Dusicyon sp.), the BR-Pfx1 isolate, was determined and compared with fixed RABV strains. The genome structure and organization of the BR-Pfx1 isolate were composed of 11,924 nt and included the five standard genes of rhabdoviruses. Sequences of mRNA start and stop signals for transcription were highly conserved among all structural protein genes of the BR-Pfx1 isolate. All amino acid residues in the glycoprotein (G) gene associated with pathogenicity were retained in the BR-Pfx1 isolate, while unique amino acid substitutions were found in antigenic region I of the nucleoprotein gene and III of G. These results suggest that although the standard genome structure and organization of the RABV isolate are common between the BR-Pfx1 isolate and fixed RABV strains, the unique amino acid substitutions in functional sites of the BR-Pfx1 isolate may result in different biological characteristics from fixed RABV strains.
Resumo:
1 The functional coupling of B-2-adrenoceptors (beta (2)-ARs) to murine L-type Ca2+ current (I-Ca(L)) was investigated with two different approaches. The beta (2)-AR signalling cascade was activated either with the beta (2)-AR selective agonist zinterol (myocytes from wild-type mice), or by spontaneously active, unoccupied beta (2)-ARs (myocytes from TG4 mice with 435 fold overexpression of human beta (2)-ARs). Ca2+ and Ba2+ currents were recorded in the whole-cell and cell-attached configuration of the patch- clamp technique, respectively. 2 Zinterol (10 muM) significantly increased I-Ca(L) amplitude of wild-type myocytes by 19+/-5%, and this effect was markedly enhanced after inactivation of Gi-proteins with pertussis-toxin (PTX; 76+/-13% increase). However, the effect of zinterol was entirely mediated by the beta (1)-AR subtype, since it was blocked by the beta (1)-AR selective antagonist CGP 20712A (300 nM). The beta (2)-AR selective antagonist ICI 118,551 (50 nM) did not affect the response of I-Ca(L) to zinterol. 3 In myocytes with beta (2)-AR overexpression I-Ca(L) was not stimulated by the activated signalling cascade. On the contrary, I-Ca(L) was lower in TG4 myocytes and a significant reduction of single-channel activity was identified as a reason for the lower whole-cell I-Ca(L). The beta (2)-AR inverse agonist ICI 118,551 did not further decrease I-Ca(L). PTX-treatment increased current amplitude to values found in control myocytes. 4 In conclusion, there is no evidence for beta (2)-AR mediated increases of I-Ca(L) in wild-type mouse ventricular myocytes. Inactivation of Gi-proteins does not unmask beta (2)-AR responses to zinterol, but augments beta (1)-AR mediated increases of I-Ca(L). In the mouse model of beta (2)-AR overexpression I-Ca(L) is reduced due to tonic activation of Gi-proteins.
Resumo:
The intracellular trafficking and subsequent incorporation of Gag-Pol into human immunodeficiency virus type 1 (HIV-1) remains poorly defined. Gag-Pol is encoded by the same mRNA as Gag and is generated by ribosomal frameshifting. The multimerization of Gag and Gag-Pol is an essential step in the formation of infectious viral particles. In this study, we examined whether the interaction between Gag and Gag-Pol is initiated during protein translation in order to facilitate the trafficking and subsequent packaging of Gag-Pol into the virion. A conditional cotransfection system was developed in which virion formation required the coexpression of two HIV-1-based plasmids, one that produces both Gag and Gag-Pol and one that only produces Gag-Pol. The Gag-Pol proteins were either immunotagged with a His epitope or functionally tagged with a mutation (K65R) in reverse transcriptase that is associated with drug resistance. Gag-Pol packaging was assessed to determine whether the Gag-Pol incorporated into the virion was preferentially packaged from the plasmid that expressed both Gag and Gag-Pol or whether it could be packaged from either plasmid. Our data show that translation of Gag and Gag-Pol from the same mRNA is not critical for virion packaging of the Gag-Pol polyprotein or for viral function.
Resumo:
Polynucleotide immunisation with the E7 gene of human papillomavirus (HPV) type 16 induces only moderate levels of immune response, which may in part be due to limitation in E7 gene expression influenced by biased HPV codon usage. Here we compare for expression and immunogenicity polynucleotide expression plasmids encoding wild-type (pWE7) or synthetic codon optimised (pHE7) HPV16 E7 DNA. Cos-1 cells transfected with pHE7 expressed higher levels of E7 protein than similar cells transfected with pW7. C57BL/6 mice and F1 (C57X FVB) E7 transgenic mice immunised intradermally with E7 plasmids produced high levels of anti-E7 antibody. pHE7 induced a significantly stronger E7-specific cytotoxic T-lymphocyte response than pWE7 and 100% tumour protection in C57BL/6 mice, but neither vaccine induced CTL in partially E7 tolerant K14E7 transgenic mice. The data indicate that immunogenicity of an E7 polynucleotide vaccine can be enhanced by codon modification. However, this may be insufficient for priming E7 responses in animals with split tolerance to E7 as a consequence of expression of E7 in somatic cells. (C) 2002 Elsevier Science (USA).
Resumo:
Human R183H-GH causes autosomal dominant GH deficiency type II. Because we show here that the mutant hormone is fully bioactive, we have sought to locate an impairment in its progress through the secretory pathway as assessed by pulse chase experiments. Newly synthesized wild-type and R183H-GH were stable when expressed transiently in AtT20 cells, and both formed equivalent amounts of Lubrol-insoluble aggregates within 40 min after synthesis. There was no evidence for intermolecular disulfide bond formation in aggregates of wild-type hormone or the R183H mutant. Both wildtype and R183H-GH were packaged into secretory granules, assessed by the ability of 1 mm BaCl2 to stimulate release and by immunocytochemistry. The mutant differed from wildtype hormone in its retention in the cells after packaging into secretory granules; 50% more R183H-GH than wild-type aggregates were retained in AtT20 cells 120 min after synthesis, and stimulated release of R183H-GH or a mixture of R183H-GH and wild-type that had been retained in the cell was reduced. The longer retention of R183H-GH aggregates indicates that a single point mutation in a protein contained in secretory granules affects the rate of secretory granule release.
Resumo:
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a marked decline in cognition and memory function. Increasing evidence highlights the essential role of neuroinflammatory and immune-related molecules, including those produced at the brain barriers, on brain immune surveillance, cellular dysfunction and amyloid beta (Aß) pathology in AD. Therefore, understanding the response at the brain barriers may unravel novel pathways of relevance for the pathophysiology of AD. Herein, we focused on the study of the choroid plexus (CP), which constitutes the blood-cerebrospinal fluid barrier, in aging and in AD. Specifically, we used the PDGFB-APPSwInd (J20) transgenic mouse model of AD, which presents early memory decline and progressive Aß accumulation, and littermate age-matched wild-type (WT) mice, to characterize the CP transcriptome at 3, 5-6 and 11-12months of age. The most striking observation was that the CP of J20 mice displayed an overall overexpression of type I interferon (IFN) response genes at all ages. Moreover, J20 mice presented a high expression of type II IFN genes in the CP at 3months, which became lower than WT at 5-6 and 11-12months. Importantly, along with a marked memory impairment and increased glial activation, J20 mice also presented a similar overexpression of type I IFN genes in the dorsal hippocampus at 3months. Altogether, these findings provide new insights on a possible interplay between type I and II IFN responses in AD and point to IFNs as targets for modulation in cognitive decline.
Resumo:
DNA strand-breaks (SBs) with non-ligatable ends are generated by ionizing radiation, oxidative stress, various chemotherapeutic agents, and also as base excision repair (BER) intermediates. Several neurological diseases have already been identified as being due to a deficiency in DNA end-processing activities. Two common dirty ends, 3'-P and 5'-OH, are processed by mammalian polynucleotide kinase 3'-phosphatase (PNKP), a bifunctional enzyme with 3'-phosphatase and 5'-kinase activities. We have made the unexpected observation that PNKP stably associates with Ataxin-3 (ATXN3), a polyglutamine repeat-containing protein mutated in spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph Disease (MJD). This disease is one of the most common dominantly inherited ataxias worldwide; the defect in SCA3 is due to CAG repeat expansion (from the normal 14-41 to 55-82 repeats) in the ATXN3 coding region. However, how the expanded form gains its toxic function is still not clearly understood. Here we report that purified wild-type (WT) ATXN3 stimulates, and by contrast the mutant form specifically inhibits, PNKP's 3' phosphatase activity in vitro. ATXN3-deficient cells also show decreased PNKP activity. Furthermore, transgenic mice conditionally expressing the pathological form of human ATXN3 also showed decreased 3'-phosphatase activity of PNKP, mostly in the deep cerebellar nuclei, one of the most affected regions in MJD patients' brain. Finally, long amplicon quantitative PCR analysis of human MJD patients' brain samples showed a significant accumulation of DNA strand breaks. Our results thus indicate that the accumulation of DNA strand breaks due to functional deficiency of PNKP is etiologically linked to the pathogenesis of SCA3/MJD.
Resumo:
Human immunodeficiency virus type 1 (HIV-1) variants resistant to protease (PR) and reverse transcriptase (RT) inhibitors may display impaired infectivity and replication capacity. The individual contributions of mutated HIV-1 PR and RT to infectivity, replication, RT activity, and protein maturation (herein referred to as "fitness") in recombinant viruses were investigated by separately cloning PR, RT, and PR-RT cassettes from drug-resistant mutant viral isolates into the wild-type NL4-3 background. Both mutant PR and RT contributed to measurable deficits in fitness of viral constructs. In peripheral blood mononuclear cells, replication rates (means +/- standard deviations) of RT recombinants were 72.5% +/- 27.3% and replication rates of PR recombinants were 60.5% +/- 33.6% of the rates of NL4-3. PR mutant deficits were enhanced in CEM T cells, with relative replication rates of PR recombinants decreasing to 15.8% +/- 23.5% of NL4-3 replication rates. Cloning of the cognate RT improved fitness of some PR mutant clones. For a multidrug-resistant virus transmitted through sexual contact, RT constructs displayed a marked infectivity and replication deficit and diminished packaging of Pol proteins (RT content in virions diminished by 56.3% +/- 10.7%, and integrase content diminished by 23.3% +/- 18.4%), a novel mechanism for a decreased-fitness phenotype. Despite the identified impairment of recombinant clones, fitness of two of the three drug-resistant isolates was comparable to that of wild-type, susceptible viruses, suggestive of extensive compensation by genomic regions away from PR and RT. Only limited reversion of mutated positions to wild-type amino acids was observed for the native isolates over 100 viral replication cycles in the absence of drug selective pressure. These data underscore the complex relationship between PR and RT adaptive changes and viral evolution in antiretroviral drug-resistant HIV-1.