997 resultados para Ultrasound extraction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies have shown that ultrasound transit time spectroscopy (UTTS) is an alternative method to describe ultrasound wave propagation through complex samples as an array of parallel sonic rays. This technique has the potential to characterize bone properties including volume fraction and may be implemented in clinical systems to predict osteoporotic fracture risk. In contrast to broadband ultrasound attenuation, which is highly frequency dependent, we hypothesise that UTTS is frequency independent. This study measured 1 MHz and 5 MHz broadband ultrasound signals through a set of acrylic step-wedge samples. Digital deconvolution of the signals through water and each sample was applied to derive a transit time spectrum. The resulting spectra at both 1 MHz and 5 MHz were compared to the predicted transit time values. Linear regression analysis yields agreement (R2) of 99.23% and 99.74% at 1 MHz and 5 MHz respectively indicating frequency independence of transit time spectra.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Erythropoietin (EPO), a glycoprotein hormone of ∼34 kDa, is an important hematopoietic growth factor, mainly produced in the kidney and controls the number of red blood cells circulating in the blood stream. Sensitive and rapid recombinant human EPO (rHuEPO) detection tools that improve on the current laborious EPO detection techniques are in high demand for both clinical and sports industry. A sensitive aptamer-functionalized biosensor (aptasensor) has been developed by controlled growth of gold nanostructures (AuNS) over a gold substrate (pAu/AuNS). The aptasensor selectively binds to rHuEPO and, therefore, was used to extract and detect the drug from horse plasma by surface enhanced Raman spectroscopy (SERS). Due to the nanogap separation between the nanostructures, the high population and distribution of hot spots on the pAu/AuNS substrate surface, strong signal enhancement was acquired. By using wide area illumination (WAI) setting for the Raman detection, a low RSD of 4.92% over 150 SERS measurements was achieved. The significant reproducibility of the new biosensor addresses the serious problem of SERS signal inconsistency that hampers the use of the technique in the field. The WAI setting is compatible with handheld Raman devices. Therefore, the new aptasensor can be used for the selective extraction of rHuEPO from biological fluids and subsequently screened with handheld Raman spectrometer for SERS based in-field protein detection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to develop a new method for quantifying intersegmental motion of the spine in an instrumented motion segment L4–L5 model using ultrasound image post-processing combined with an electromagnetic device. A prospective test–retest design was employed, combined with an evaluation of stability and within- and between-day intra-tester reliability during forward bending by 15 healthy male patients. The accuracy of the measurement system using the model was calculated to be ± 0.9° (standard deviation = 0.43) over a 40° range and ± 0.4 cm (standard deviation = 0.28) over 1.5 cm. The mean composite range of forward bending was 15.5 ± 2.04° during a single trial (standard error of the mean = 0.54, coefficient of variation = 4.18). Reliability (intra-class correlation coefficient = 2.1) was found to be excellent for both within-day measures (0.995–0.999) and between-day measures (0.996–0.999). Further work is necessary to explore the use of this approach in the evaluation of biomechanics, clinical assessments and interventions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective To analyze the ability to discriminate between healthy individuals and individuals with chronic nonspecific low back pain (CNLBP) by measuring the relation between patient-reported outcomes and objective clinical outcome measures of the erector spinae (ES) muscles using an ultrasound during maximal isometric lumbar extension. Design Cross-sectional study with screening and diagnostic tests with no blinded comparison. Setting University laboratory. Participants Healthy individuals (n=33) and individuals with CNLBP (n=33). Interventions Each subject performed an isometric lumbar extension. With the variables measured, a discriminate analysis was performed using a value ≥6 in the Roland and Morris disability questionnaire (RMDQ) as the grouping variable. Then, a logistic regression with the functional and architectural variables was performed. A new index was obtained from each subject value input in the discriminate multivariate analysis. Main Outcome Measures Morphologic muscle variables of the ES muscle were measured through ultrasound images. The reliability of the measures was calculated through intraclass correlation coefficients (ICCs). The relation between patient-reported outcomes and objective clinical outcome measures was analyzed using a discriminate function from standardized values of the variables and an analysis of the reliability of the ultrasound measurement. Results The reliability tests show an ICC value >.95 for morphologic and functional variables. The independent variables included in the analysis explained 42% (P=.003) of the dependent variable variance. Conclusions The relation between objective variables (electromyography, thickness, pennation angle) and a subjective variable (RMDQ ≥6) and the capacity of this relation to identify CNLBP within a group of healthy subjects is moderate. These results should be considered by clinicians when treating this type of patient in clinical practice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective This paper presents an automatic active learning-based system for the extraction of medical concepts from clinical free-text reports. Specifically, (1) the contribution of active learning in reducing the annotation effort, and (2) the robustness of incremental active learning framework across different selection criteria and datasets is determined. Materials and methods The comparative performance of an active learning framework and a fully supervised approach were investigated to study how active learning reduces the annotation effort while achieving the same effectiveness as a supervised approach. Conditional Random Fields as the supervised method, and least confidence and information density as two selection criteria for active learning framework were used. The effect of incremental learning vs. standard learning on the robustness of the models within the active learning framework with different selection criteria was also investigated. Two clinical datasets were used for evaluation: the i2b2/VA 2010 NLP challenge and the ShARe/CLEF 2013 eHealth Evaluation Lab. Results The annotation effort saved by active learning to achieve the same effectiveness as supervised learning is up to 77%, 57%, and 46% of the total number of sequences, tokens, and concepts, respectively. Compared to the Random sampling baseline, the saving is at least doubled. Discussion Incremental active learning guarantees robustness across all selection criteria and datasets. The reduction of annotation effort is always above random sampling and longest sequence baselines. Conclusion Incremental active learning is a promising approach for building effective and robust medical concept extraction models, while significantly reducing the burden of manual annotation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a new active learning query strategy for information extraction, called Domain Knowledge Informativeness (DKI). Active learning is often used to reduce the amount of annotation effort required to obtain training data for machine learning algorithms. A key component of an active learning approach is the query strategy, which is used to iteratively select samples for annotation. Knowledge resources have been used in information extraction as a means to derive additional features for sample representation. DKI is, however, the first query strategy that exploits such resources to inform sample selection. To evaluate the merits of DKI, in particular with respect to the reduction in annotation effort that the new query strategy allows to achieve, we conduct a comprehensive empirical comparison of active learning query strategies for information extraction within the clinical domain. The clinical domain was chosen for this work because of the availability of extensive structured knowledge resources which have often been exploited for feature generation. In addition, the clinical domain offers a compelling use case for active learning because of the necessary high costs and hurdles associated with obtaining annotations in this domain. Our experimental findings demonstrated that 1) amongst existing query strategies, the ones based on the classification model’s confidence are a better choice for clinical data as they perform equally well with a much lighter computational load, and 2) significant reductions in annotation effort are achievable by exploiting knowledge resources within active learning query strategies, with up to 14% less tokens and concepts to manually annotate than with state-of-the-art query strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An automated method for extracting brain volumes from three commonly acquired three-dimensional (3D) MR images (proton density, T1 weighted, and T2-weighted) of the human head is described. The procedure is divided into four levels: preprocessing, segmentation, scalp removal, and postprocessing. A user-provided reference point is the sole operator-dependent input required. The method's parameters were first optimized and then fixed and applied to 30 repeat data sets from 15 normal older adult subjects to investigate its reproducibility. Percent differences between total brain volumes (TBVs) for the subjects' repeated data sets ranged from .5% to 2.2%. We conclude that the method is both robust and reproducible and has the potential for wide application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In aerosol research, a common approach for the collection of particulate matter (PM) is the use of filters in order to obtain sufficient material to undertake analysis. For subsequent chemical and toxicological analyses, in most of cases the PM needs to be extracted from the filters. Sonication is commonly used to most efficiently extract the PM from the filters. Extraction protocols generally involve 10 - 60 min of sonication. The energy of ultrasonic waves causes the formation and collapse of cavitation bubbles in the solution. Inside the collapsing cavities the localised temperatures and pressures can reach extraordinary values. Although fleeting, such conditions can lead to pyrolysis of the molecules present inside the cavitation bubbles (gases dissolved in the liquid and solvent vapours), which results in the production of free radicals and the generation of new compounds formed by reactions with these free radicals. For example, simple sonication of pure water will result in the formation of detectable levels of hydroxyl radicals. As hydroxyl radicals are recognised as playing key roles as oxidants in the atmosphere the extraction of PM from filters using sonication is therefore problematic. Sonication can result in significant chemical and physical changes to PM through thermal degradation and other reactions. In this article, an overview of sonication technique as used in aerosol research is provided, the capacity for radical generation under these conditions is described and an analysis is given of the impact of sonication-derived free radicals on three molecular probes commonly used by researchers in this field to detect Reactive Oxygen Species in PM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Currently we are facing an overburdening growth of the number of reliable information sources on the Internet. The quantity of information available to everyone via Internet is dramatically growing each year [15]. At the same time, temporal and cognitive resources of human users are not changing, therefore causing a phenomenon of information overload. World Wide Web is one of the main sources of information for decision makers (reference to my research). However our studies show that, at least in Poland, the decision makers see some important problems when turning to Internet as a source of decision information. One of the most common obstacles raised is distribution of relevant information among many sources, and therefore need to visit different Web sources in order to collect all important content and analyze it. A few research groups have recently turned to the problem of information extraction from the Web [13]. The most effort so far has been directed toward collecting data from dispersed databases accessible via web pages (related to as data extraction or information extraction from the Web) and towards understanding natural language texts by means of fact, entity, and association recognition (related to as information extraction). Data extraction efforts show some interesting results, however proper integration of web databases is still beyond us. Information extraction field has been recently very successful in retrieving information from natural language texts, however it is still lacking abilities to understand more complex information, requiring use of common sense knowledge, discourse analysis and disambiguation techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an empirical evaluation and comparison of two content extraction methods in HTML: absolute XPath expressions and relative XPath expressions. We argue that the relative XPath expressions, although not widely used, should be used in preference to absolute XPath expressions in extracting content from human-created Web documents. Evaluation of robustness covers four thousand queries executed on several hundred webpages. We show that in referencing parts of real world dynamic HTML documents, relative XPath expressions are on average significantly more robust than absolute XPath ones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Piezoelectric ultrasound transducers are commonly used to convert mechanical energy to electrical energy and vice versa. The transducer performance is highly affected by the frequency at which it is excited. If excitation frequency and main resonant frequency match, transducers can deliver maximum power. However, the problem is that main resonant frequency changes in real time operation resulting in low power conversion. To achieve the maximum possible power conversion, the transducer should be excited at its resonant frequency estimated in real time. This paper proposes a method to first estimate the resonant frequency of the transducer and then tunes the excitation frequency accordingly in real time. The measurement showed a significant difference between the offline and real time resonant frequencies. Also, it was shown that the maximum power was achieved at the resonant frequency estimated in real time compare to the one measured offline.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrasound has been previously investigated as an alternative readout method for irradiated polymer gel dosimeters, with authors reporting varying dose responses. We extend previous work utilizing a new computed tomography ultrasound scanner comprising of two identical 5 MHz, 128-element linear-array ultrasound transducers, co-axially aligned and submerged in water as a coupling agent, with rotational of the gel dosimeter between the transducers facilitated by a robotic arm. We have investigated the dose-dependence of both ultrasound bulk attenuation and broadband ultrasound attenuation (BUA) for the PAGAT gel dosimeter. The ultrasound bulk attenuation dose sensitivity was found to be 1.46  ±  0.04 dB m −1 Gy −1, being in agreement with previously published results for PAG and MAGIC gels. BUA was also found to be dose dependent and was measured to be 0.024  ±  0.003 dB MHz −1 Gy −1; the advantage of BUA being its insensitivity to frequency-independent attenuation mechanisms including reflection and refraction, thereby minimizing image reconstruction artefacts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method for determination of tricyclazole in water using solid phase extraction and high performance liquid chromatography (HPLC) with UV detection at 230nm and a mobile phase of acetonitrile:water (20:80, v/v) was developed. A performance comparison between two types of solid phase sorbents, the C18 sorbent of Supelclean ENVI-18 cartridge and the styrene-divinyl benzene copolymer sorbent of Sep-Pak PS2-Plus cartridge was conducted. The Sep-Pak PS2-Plus cartridges were found more suitable for extracting tricyclazole from water samples than the Supelclean ENVI-18 cartridges. For this cartridge, both methanol and ethyl acetate produced good results. The method was validated with good linearity and with a limit of detection of 0.008gL-1 for a 500-fold concentration through the SPE procedure. The recoveries of the method were stable at 80% and the precision was from 1.1-6.0% within the range of fortified concentrations. The validated method was also applied to measure the concentrations of tricyclazole in real paddy water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Semi-rigid molecular tweezers 1, 3 and 4 bind picric acid with more than tenfold increment in tetrachloromethane as compared to chloroform.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Frog protection has become increasingly essential due to the rapid decline of its biodiversity. Therefore, it is valuable to develop new methods for studying this biodiversity. In this paper, a novel feature extraction method is proposed based on perceptual wavelet packet decomposition for classifying frog calls in noisy environments. Pre-processing and syllable segmentation are first applied to the frog call. Then, a spectral peak track is extracted from each syllable if possible. Track duration, dominant frequency and oscillation rate are directly extracted from the track. With k-means clustering algorithm, the calculated dominant frequency of all frog species is clustered into k parts, which produce a frequency scale for wavelet packet decomposition. Based on the adaptive frequency scale, wavelet packet decomposition is applied to the frog calls. Using the wavelet packet decomposition coefficients, a new feature set named perceptual wavelet packet decomposition sub-band cepstral coefficients is extracted. Finally, a k-nearest neighbour (k-NN) classifier is used for the classification. The experiment results show that the proposed features can achieve an average classification accuracy of 97.45% which outperforms syllable features (86.87%) and Mel-frequency cepstral coefficients (MFCCs) feature (90.80%).