984 resultados para Transition rates
Resumo:
Planktic foraminifera across the Paleocene-Eocene transition at DSDP Site 401 indicate that the benthic foraminiferal mass extinction occurred within Subzone P 6a of Berggren and Miller (1988), or PS of Berggren et al. (1995) and coincident with a sudden 2.0? excursion in 6r3C values. The benthic foraminiferal extinction event (BFEE) and Sr3C excursion was accompanied by a planktic foraminiferal turnover marked by an influx of warm water species (Morozovella and Acarinina), a decrease in cooler water species (Subbotina), a sudden short-term increase in low oxygen tolerant taxa (Chiloguembelina), and no significant species extinctions. These faunal changes suggest climatic warming, expansion of the oxygen minimum zone, and a well stratified ocean water column. Oxygen isotope data of the surface dweller M. subbotina suggest climate warming beginning with a gradual 0.5? decrease in delta180 in the 175 cm preceding the benthic foraminiferal extinction event followed by a sudden decrease of 1? (4°C) at the BFEE. The delta13C excursion occurred over 27 cm of sediment and, assuming constant sediment accumulation rates, represents a maximum of 23 ka. Recovery to pre-excursion delta13C values occurs within 172 cm, or about 144 ka. Climate cooling begins in Subzone P 6c as indicated by an increase in cooler water subbotinids and acarininids with rounded chambers and a decrease in warm water morozovellids.
Resumo:
During the late Pliocene-middle Pleistocene, 63 species of elongate, bathyal-upper abyssal benthic foraminifera (Extinction Group = Stilostomellidae, Pleurostomellidae, some Nodosariidae) declined in abundance and finally disappeared in the northern Indian Ocean (ODP Sites 722, 758), as part of the global extinction of at least 88 related species at this time. The detailed record of withdrawal of these species differs by depth and geography in the Indian Ocean. In northwest Indian Ocean Site 722 (2045 m), the Extinction Group of 54 species comprised 2-15% of the benthic foraminiferal fauna in the earliest Pleistocene, but declined dramatically during the onset of the mid-Pleistocene Transition (MPT) at 1.2-1.1 Ma, with all but three species disappearing by the end of the MPT (~0.6 Ma). In northeast Indian Ocean Site 758 (2925 m), the Extinction Group of 44 species comprised 1-5% of the benthic foraminiferal fauna at ~3.3-2.6 Ma, but declined in abundance and diversity in three steps, at ~2.5, 1.7, and 1.2 Ma, with all but one species disappearing by the end of the MPT. At both sites there are strong positive correlations between the accumulation rate of the Extinction Group and proxies indicating low-oxygen conditions with a high organic carbon input. In both sites, there was a pulsed decline in Extinction Group abundance and species richness, especially in glacial periods, with some partial recoveries in interglacials. We infer that the glacial declines at the deeper Site 758 were a result of increased production of colder, well-ventilated Antarctic Bottom Water (AABW), particularly in the late Pliocene and during the MPT. The Extinction Group at shallower water depths (Site 722) were not impacted by the deeper water mass changes until the onset of the MPT, when cold, well-ventilated Glacial North Atlantic Intermediate Water (GNAIW) production increased and may have spread into the Indian Ocean. Increased chemical ventilation at various water depths since late Pliocene, particularly in glacial periods, possibly in association with decreased or more fluctuating organic carbon flux, might be responsible for the pulsed global decline and extinction of this rather specialised group of benthic foraminifera.
Resumo:
A 5-year sediment trap survey in the upwelling area off Cape Blanc (NW Africa) provides information on the seasonal and annual resting cyst production of dinoflagellates, their sinking characteristics and preservation potential. Strong annual variation in cyst production characterizes the region. Cyst production of generally all investigated species, including Alexandrium pseudogonyaulax (Biecheler) T. Horig. ex T. Kita et Fukuyo (cyst genus Impagidinium) and Gonyaulax spinifera (Clap. et J. Lachm.) Diesing (cyst genus Nematosphaeropsis) was enhanced with increasing upper water nutrient and trace-element concentrations. Cyst production of Lingulodinium polyedrum (F. Stein) J. D. Dodge was the highest at the transition between upwelling and upwelling-relaxation. Cyst production of Protoperidinium americanum (Gran et Braarud) Balech, Protoperidinium monospinum (Paulsen) K. A. F. Zonn. et B. Dale, and Protoperidinium stellatum (D. Wall) Balech, and heterotrophic dinoflagellates forming Brigantedinium spp. and Echinidinium aculeatum Zonn., increased most pronouncedly during upwelling episodes. Production of Protoperidinium conicum (Gran) Balech and Protoperidinium pentagonum (Gran) Balech cysts and total diatom valves were related, providing evidence of a predator-prey relationship. The export cyst-flux of E. aculeatum, P. americanum, P. monospinum, and P. stellatum was strongly linked to the flux of total diatom valves and CaCO3, whereas the export production of Echinidinium granulatum Zonn. and Protoperidinium subinerme (Paulsen) A. R. Loebl. correlated with total organic carbon, suggesting potential consumption of diatoms, prymnesiophytes, and organic matter, respectively. Sinking velocities were at least 274 m · d**-1, which is in range of the diatom- and coccolith-based phytoplankton aggregates and "slower" fecal pellets. Species-selective degradation did not occur in the water column, but on the ocean floor.
Resumo:
The lack of extended dataset has so far prevented an inclusive understanding of the long-term relationships between primary production (PP) and vertical export in the Arctic Ocean. It is urgent to investigate these connections as Arctic ecosystems are on the verge of climate-related shifts, which could be caused by the combined effects of increase in Pacific and Atlantic inflow, climate warming, and sea ice decline. For a period of 6 years we investigated the degree of coupling between PP and export by making use of modelled PP rates and vertical particle fluxes collected with sediment traps moored at ~300 m depth in the eastern Fram Strait. Our analyses indicate that total and new simulated PP averaged for different areas centered on the mooring location (5-200 km radius) explain at best 20-44% of the observed biogenic particle fluxes at 300 m, when applying extended time-lags (55-90 days) between PP and vertical fluxes. Based on this phasing, we define a conceptual framework that presents the temporal dimension as a prime determinant of the maximum strength of the PP-export coupling at a given depth. Our results support that planktonic food webs in the Fram Strait process heavily biogenic material in the epipelagic zone, but we further suggest that Atlantic-Arctic water interactions induce a particular ecological setting responsible for the extended turn-over. In conclusion, we hypothesize that global warming could promote a transition toward a more retentive ecosystem in the Fram Strait region despite the likely increase of pelagic PP in the Arctic Ocean.
Resumo:
The Pliocene and Early Pleistocene, between 5.3 and 0.8 million years ago, span a transition from a global climate state that was 2-3 °C warmer than present with limited ice sheets in the Northern Hemisphere to one that was characterized by continental-scale glaciations at both poles. Growth and decay of these ice sheets was paced by variations in the Earth's orbit around the Sun. However, the nature of the influence of orbital forcing on the ice sheets is unclear, particularly in light of the absence of a strong 20,000-year precession signal in geologic records of global ice volume and sea level. Here we present a record of the rate of accumulation of iceberg-rafted debris offshore from the East Antarctic ice sheet, adjacent to the Wilkes Subglacial Basin, between 4.3 and 2.2 million years ago. We infer that maximum iceberg debris accumulation is associated with the enhanced calving of icebergs during ice-sheet margin retreat. In the warmer part of the record, between 4.3 and 3.5 million years ago, spectral analyses show a dominant periodicity of about 40,000 years. Subsequently, the powers of the 100,000-year and 20,000-year signals strengthen. We suggest that, as the Southern Ocean cooled between 3.5 and 2.5 million years ago, the development of a perennial sea-ice field limited the oceanic forcing of the ice sheet. After this threshold was crossed, substantial retreat of the East Antarctic ice sheet occurred only during austral summer insolation maxima, as controlled by the precession cycle.
Resumo:
We address the puzzle why the black market for foreign exchange thrives in Myanmar despite the successful unification of multiple exchange rates. A closer look at the black market reveals that its enduring competitiveness stems from its lower transaction costs. A question arising from this observation is how the official market, namely banks, can compete with and replace the black market. Our empirical analysis based on an original questionnaire survey of private export firms regarding their choices of currency trading modes suggests that banks can attract exporters by exploiting the economies of scope between currency trading and lending.
Resumo:
The solutions studied were Plant Vitrification Solutions 1, 2 and 3: (PVS1: Uragami et al. 1989, Plant Cell Rep. 8, 418; PVS2: Sakai et al. 1990, Plant Cell Rep. 9, 30; PVS3: Nishizawa et al. 1993, Plant Sci. 91, 67). Cooling was performed using the calorimeter control (5, 10 and 20°C min-1), or for higher rates, by quenching the closed pan with PVS in LN, either naked (faster - 5580°C min-1) or introduced in cryovials (reduced rate 360°C min-1). Quenched pans were then transferred to the sample chamber, pre-cooled to -196°C. Glass transition temperature was observed by DSC with a TA 2920 instrument, upon warming pans with solution samples from -145°C to room temperature, at standard warming rate10°C min-1.
Resumo:
Two independent multidisciplinary studies of climatic change during the glacial–Holocene transition (ca. 14,000–9,000 calendar yr B.P.) from Norway and Switzerland have assessed organism responses to the rapid climatic changes and made quantitative temperature reconstructions with modern calibration data sets (transfer functions). Chronology at Kråkenes, western Norway, was derived from calibration of a high-resolution series of 14C dates. Chronologies at Gerzensee and Leysin, Switzerland, were derived by comparison of δ18O in lake carbonates with the δ18O record from the Greenland Ice Core Project. Both studies demonstrate the sensitivity of terrestrial and aquatic organisms to rapid temperature changes and their value for quantitative reconstruction of the magnitudes and rates of the climatic changes. The rates in these two terrestrial records are comparable to those in Greenland ice cores, but the actual temperatures inferred apply to the terrestrial environments of the two regions.
Resumo:
I attempt to reconcile apparently conflicting factors and mechanisms that have been proposed to determine the rate constant for two-state folding of small proteins, on the basis of general features of the structures of transition states. Φ-Value analysis implies a transition state for folding that resembles an expanded and distorted native structure, which is built around an extended nucleus. The nucleus is composed predominantly of elements of partly or well-formed native secondary structure that are stabilized by local and long-range tertiary interactions. These long-range interactions give rise to connecting loops, frequently containing the native loops that are poorly structured. I derive an equation that relates differences in the contact order of a protein to changes in the length of linking loops, which, in turn, is directly related to the unfavorable free energy of the loops in the transition state. Kinetic data on loop extension mutants of CI2 and α-spectrin SH3 domain fit the equation qualitatively. The rate of folding depends primarily on the interactions that directly stabilize the nucleus, especially those in native-like secondary structure and those resulting from the entropy loss from the connecting loops, which vary with contact order. This partitioning of energy accounts for the success of some algorithms that predict folding rates, because they use these principles either explicitly or implicitly. The extended nucleus model thus unifies the observations of rate depending on both stability and topology.
Resumo:
Point mutants of three unrelated antifluorescein antibodies were constructed to obtain nine different single-chain Fv fragments, whose on-rates, off-rates, and equilibrium binding affinities were determined in solution. Additionally, activation energies for unbinding were estimated from the temperature dependence of the off-rate in solution. Loading rate-dependent unbinding forces were determined for single molecules by atomic force microscopy, which extrapolated at zero force to a value close to the off-rate measured in solution, without any indication for multiple transition states. The measured unbinding forces of all nine mutants correlated well with the off-rate in solution, but not with the temperature dependence of the reaction, indicating that the same transition state must be crossed in spontaneous and forced unbinding and that the unbinding path under load cannot be too different from the one at zero force. The distance of the transition state from the ground state along the unbinding pathway is directly proportional to the barrier height, regardless of the details of the binding site, which most likely reflects the elasticity of the protein in the unbinding process. Atomic force microscopy thus can be a valuable tool for the characterization of solution properties of protein-ligand systems at the single molecule level, predicting relative off-rates, potentially of great value for combinatorial chemistry and biology.
Resumo:
Allosteric effects in hemoglobin arise from the equilibrium between at least two energetic states of the molecule: a tense state, T, and a relaxed state, R. The two states differ from each other in the number and energy of the interactions between hemoglobin subunits. In the T state, constraints between subunits oppose the structural changes resulting from ligand binding. In the R state, these constraints are released, thus enhancing ligand-binding affinity. In the present work, we report the presence of four sites in hemoglobin that are structurally stabilized in the R relative to the T state. These sites are Hisα103(G10) and Hisα122(H5) in each α subunit of hemoglobin. They are located at the α1β1 and α2β2 interfaces of the hemoglobin tetramer, where the histidine side chains form hydrogen bonds with specific residues from the β chains. We have measured the solvent exchange rates of side chain protons of Hisα103(G10) and Hisα122(H5) in both deoxygenated and ligated hemoglobin by NMR spectroscopy. The exchange rates were found to be higher in the deoxygenated-T than in ligated-R state. Analysis of exchange rates in terms of the local unfolding model revealed that the structural stabilization free energy at each of these two histidines is larger by ≈1.5 kcal/(mol tetramer) in the R relative to the T state. The location of these histidines at the intradimeric α1β1 and α2β2 interfaces also suggests a role for these interfaces in the allosteric equilibrium of hemoglobin.
Resumo:
Carbohydrate–protein bonds interrupt the rapid flow of leukocytes in the circulation by initiation of rolling and tethering at vessel walls. The cell surface carbohydrate ligands are glycosylated proteins like the mucin P-selectin glycoprotein ligand-1 (PSGL-1), which bind ubiquitously to the family of E-, P-, and L-selectin proteins in membranes of leukocytes and endothelium. The current view is that carbohydrate–selectin bonds dissociate a few times per second, and the unbinding rate increases weakly with force. However, such studies have provided little insight into how numerous hydrogen bonds, a Ca2+ metal ion bond, and other interactions contribute to the mechanical strength of these attachments. Decorating a force probe with very dilute ligands and controlling touch to achieve rare single-bond events, we have varied the unbinding rates of carbohydrate–selectin bonds by detachment with ramps of force/time from 10 to 100,000 pN/sec. Testing PSGL-1, its outer 19 aa (19FT), and sialyl LewisX (sLeX) against L-selectin in vitro on glass microspheres and in situ on neutrophils, we found that the unbinding rates followed the same dependence on force and increased by nearly 1,000-fold as rupture forces rose from a few to ≈200 pN. Plotted on a logarithmic scale of loading rate, the rupture forces reveal two prominent energy barriers along the unbinding pathway. Strengths above 75 pN arise from rapid detachment (<0.01 sec) impeded by an inner barrier that requires a Ca2+ bond between a single sLeX and the lectin domain. Strengths below 75 pN occur under slow detachment (>0.01 sec) impeded by the outer barrier, which appears to involve an array of weak (putatively hydrogen) bonds.
Resumo:
Small, single-module proteins that fold in a single cooperative step may be paradigms for understanding early events in protein-folding pathways generally. Recent experimental studies of the 64-residue chymotrypsin inhibitor 2 (CI2) support a nucleation mechanism for folding, as do some computer stimulations. CI2 has a nucleation site that develops only in the transition state for folding. The nucleus is composed of a set of adjacent residues (an alpha-helix), stabilized by long-range interactions that are formed as the rest of the protein collapses around it. A simple analysis of the optimization of the rate of protein folding predicts that rates are highest when the denatured state has little residual structure under physiological conditions and no intermediates accumulate. This implies that any potential nucleation site that is composed mainly of adjacent residues should be just weakly populated in the denatured state and become structured only in a high-energy intermediate or transition state when it is stabilized by interactions elsewhere in the protein. Hierarchical mechanisms of folding in which stable elements of structure accrete are unfavorable. The nucleation-condensation mechanism of CI2 fulfills the criteria for fast folding. On the other hand, stable intermediates do form in the folding of more complex proteins, and this may be an unavoidable consequence of increasing size and nucleation at more than one site.