917 resultados para Therapeutics, Physiological.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The CDC73 gene is mutationally inactivated in hereditary and sporadic parathyroid tumors. It negatively regulates beta-catenin, cyclin D1, and c-MYC. Down-regulation of CDC73 has been reported in breast, renal, and gastric carcinomas. However, the reports regarding the role of CDC73 in oral squamous cell carcinoma (OSCC) are lacking. In this study we show that CDC73 is down-regulated in a majority of OSCC samples. We further show that oncogenic microRNA-155 (miR-155) negatively regulates CDC73 expression. Our experiments show that the dramatic up-regulation of miR-155 is an exclusive mechanism for down-regulation of CDC73 in a panel of human cell lines and a subset of OSCC patient samples in the absence of loss of heterozygosity, mutations, and promoter methylation. Ectopic expression of miR-155 in HEK293 cells dramatically reduced CDC73 levels, enhanced cell viability, and decreased apoptosis. Conversely, the delivery of a miR-155 antagonist (antagomir-155) to KB cells overexpressing miR-155 resulted in increased CDC73 levels, decreased cell viability, increased apoptosis, and marked regression of xenografts in nude mice. Cotransfection of miR-155 with CDC73 in HEK293 cells abrogated its pro-oncogenic effect. Reduced cell proliferation and increased apoptosis of KB cells were dependent on the presence or absence of the 3'-UTR in CDC73. In summary, knockdown of CDC73 expression due to overexpression of miR-155 not only adds a novelty to the list of mechanisms responsible for its down-regulation in different tumors, but the restoration of CDC73 levels by the use of antagomir-155 may also have an important role in therapeutic intervention of cancers, including OSCC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In animal populations, the constraints of energy and time can cause intraspecific variation in foraging behaviour. The proximate developmental mediators of such variation are often the mechanisms underlying perception and associative learning. Here, experience-dependent changes in foraging behaviour and their consequences were investigated in an urban population of free-ranging dogs, Canis familiaris by continually challenging them with the task of food extraction from specially crafted packets. Typically, males and pregnant/lactating (PL) females extracted food using the sophisticated `gap widening' technique, whereas non-pregnant/non-lactating (NPNL) females, the relatively underdeveloped `rip opening' technique. In contrast to most males and PL females (and a few NPNL females) that repeatedly used the gap widening technique and improved their performance in food extraction with experience, most NPNL females (and a few males and PL females) non-preferentially used the two extraction techniques and did not improve over successive trials. Furthermore, the ability of dogs to sophisticatedly extract food was positively related to their ability to improve their performance with experience. Collectively, these findings demonstrate that factors such as sex and physiological state can cause differences among individuals in the likelihood of learning new information and hence, in the rate of resource acquisition and monopolization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A controlled laboratory experiment was carried out on forty Indian male college students for evaluating the effect of indoor thermal environment on occupants' response and thermal comfort. During experiment, indoor temperature varied from 21 degrees C to 33 degrees C, and the variables like relative humidity, airflow, air temperature and radiant temperature were recorded along with skin (T-sk) and oral temperature (T-core) from the subjects. From T-sk and T-c, body temperature (T-b) was evaluated. Subjective Thermal Sensation Vote (TSV) was recorded using ASHRAE 7-point scale. In PMV model, Fanger's T-sk equation was used to accommodate adaptive response. Stepwise regression analysis result showed T-b was better predictor of TSV than T-sk and T-core. Regional skin temperature response, lower sweat threshold temperature with no dipping sweat and higher cutaneous sweating threshold temperature were observed as thermal adaptive responses. Using PMV model, thermal comfort zone was evaluated as (22.46-25.41) degrees C with neutral temperature of 23.91 degrees C, whereas using TSV response, wider comfort zone was estimated as (23.25-2632) degrees C with neutral temperature at 24.83 degrees C. It was observed that PMV-model overestimated the actual thermal response. Interestingly, these subjects were found to be less sensitive to hot but more sensitive to cold. A new TSV-PPD relation (PPDnew) was obtained with an asymmetric distribution of hot-cold thermal sensation response in Indians. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Systems biology is revealing multiple layers of regulatory networks that manifest spatiotemporal variations. Since genes and environment also influence the emergent property of a cell, the biological output requires dynamic understanding of various molecular circuitries. The metabolic networks continually adapt and evolve to cope with the changing milieu of the system, which could also include infection by another organism. Such perturbations of the functional networks can result in disease phenotypes, for instance tuberculosis and cancer. In order to develop effective therapeutics, it is important to determine the disease progression profiles of complex disorders that can reveal dynamic aspects and to develop mutitarget systemic therapies that can help overcome pathway adaptations and redundancy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Wilms tumor 1 gene (WT1) can either repress or induce the expression of genes. Inconsistent with its tumor suppressor role, elevated WT1 levels have been observed in leukemia and solid tumors. WT1 has also been suggested to act as an oncogene by inducing the expression of MYC and BCL-2. However, these are only the correlational studies, and no functional study has been performed to date. Consistent with its tumor suppressor role, CDC73 binds to RNA polymerase II as part of a PAF1 transcriptional regulatory complex and causes transcriptional repression of oncogenes MYC and CCND1. It also represses beta-catenin-mediated transcription. Based on the reduced level of CDC73 in oral squamous cell carcinoma (OSCC) samples in the absence of loss-of-heterozygosity, promoter methylation, and mutations, we speculated that an inhibitory transcription factor is regulating its expression. The bioinformatics analysis predicted WT1 as an inhibitory transcription factor to regulate the CDC73 level. Our results showed that overexpression of WT1 decreased CDC73 levels and promoted proliferation of OSCC cells. ChIP and EMSA results demonstrated binding of WT1 to the CDC73 promoter. The 5-azacytidine treatment of OSCC cells led to an up-regulation of WT1 with a concomitant down-regulation of CDC73, further suggesting regulation of CDC73 by WT1. Exogenous CDC73 attenuated the protumorigenic activity of WT1 by apoptosis induction. An inverse correlation between expression levels of CDC73 and WT1 was observed in OSCC samples. These observations indicated that WT1 functions as an oncogene by repressing the expression of CDC73 in OSCC. We suggest that targeting WT1 could be a therapeutic strategy for cancer, including OSCC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Computational Analysis of Novel Drug Opportunities (CANDO) platform (http://protinfo.org/cando) uses similarity of compound-proteome interaction signatures to infer homology of compound/drug behavior. We constructed interaction signatures for 3733 human ingestible compounds covering 48,278 protein structures mapping to 2030 indications based on basic science methodologies to predict and analyze protein structure, function, and interactions developed by us and others. Our signature comparison and ranking approach yielded benchmarking accuracies of 12-25% for 1439 indications with at least two approved compounds. We prospectively validated 49/82 `high value' predictions from nine studies covering seven indications, with comparable or better activity to existing drugs, which serve as novel repurposed therapeutics. Our approach may be generalized to compounds beyond those approved by the FDA, and can also consider mutations in protein structures to enable personalization. Our platform provides a holistic multiscale modeling framework of complex atomic, molecular, and physiological systems with broader applications in medicine and engineering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estrogen-related receptor (ESRRA) functions as a transcription factor and regulates the expression of several genes, such as WNT11 and OPN. Up-regulation of ESRRA has been reported in several cancers. However, the mechanism underlying its up-regulation is unclear. Furthermore, the reports regarding the role and regulation of ESRRA in oral squamous cell carcinoma (OSCC) are completely lacking. Here, we show that tumor suppressor miR-125a directly binds to the 3UTR of ESRRA and represses its expression. Overexpression of miR-125a in OSCC cells drastically reduced the level of ESRRA, decreased cell proliferation, and increased apoptosis. Conversely, the delivery of an miR-125a inhibitor to these cells drastically increased the level of ESRRA, increased cell proliferation, and decreased apoptosis. miR-125a-mediated down-regulation of ESRRA impaired anchorage-independent colony formation and invasion of OSCC cells. Reduced cell proliferation and increased apoptosis of OSCC cells were dependent on the presence of the 3UTR in ESRRA. The delivery of an miR-125a mimic to OSCC cells resulted in marked regression of xenografts in nude mice, whereas the delivery of an miR-125a inhibitor to OSCC cells resulted in a significant increase of xenografts and abrogated the tumor suppressor function of miR-125a. We observed an inverse correlation between the expression levels of miR-125a and ESRRA in OSCC samples. In summary, up-regulation of ESRRA due to down-regulation of miR-125a is not only a novel mechanism for its up-regulation in OSCC, but decreasing the level of ESRRA by using a synthetic miR-125a mimic may have an important role in therapeutic intervention of OSCC and other cancers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among DNA damages, double-strand breaks (DSBs) are one of the most harmful lesions to a cell. Failure in DSB repair could lead to genomic instability and cancer. Homologous recombination (HR) and nonhomologous end joining (NHEJ) are major DSB repair pathways in higher eukaryotes. It is known that expression of DSB repair genes is altered in various cancers. Activation of DSB repair genes is one of the reasons for chemo-and radioresistance. Therefore, targeting DSB repair is an attractive strategy to eliminate cancer. Besides, therapeutic agents introduce breaks in the genome as an intermediate. Therefore, blocking the residual repair using inhibitors can potentiate the efficacy of cancer treatment. In this review, we discuss the importance of targeting DSB repair pathways for the treatment of cancer. Recent advances in the development of DSB repair inhibitors and their clinical relevance are also addressed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, multifaceted clinical benefits of polymeric therapeutics have been reported. Over the past decades, cancer has been one of the leading causes of mortality in the world. Many clinically approved chemotherapeutics encounter potential challenges against deadly cancer. Moreover, safety and efficacy of anticancer agents have been limited by undesirable pharmacokinetics and biodistribution. To address these limitations, various polymer drug conjugates are being studied and developed to improve the antitumor efficacy. Among other therapeutics, polymer therapeutics are well established platforms that circumvent anticancer therapeutics from enzymatic metabolism via direct conjugation to therapeutic molecules. Interestingly, polymer therapeutics meets an unmet need of small molecules. Further clinical study showed that polymer-drug conjugation can achieve desired pharmacokinetics and biodistribution properties of several anticancer drugs. The present retrospective review mainly enlightens the most recent preclinical and clinical studies include safety, stability, pharmacokinetic behavior and distribution of polymer therapeutics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most organisms possess bifunctional FolD 5,10-methylenetetrahydrofolate (5,10-CH2-THF) dehydrogenase-cyclohydrolase] to generate NADPH and 10-formyltetrandrofolate (10-CHO-THF) required in various metabolic steps. In addition, some organisms including Clostridium perfringens possess another protein, Fhs (formyltetrahydrofolate synthetase), to synthesize 10-CHO-THF. Here, we show that unlike the bifunctional FolD of Escherichia coli (Eco FolD), and contrary to its annotated bifunctional nature, C. perfringens FolD (Cpe FoID) is a monofunctional 5,10-CH2-THF dehydrogenase. The dehydrogenase activity of Cpe FoID is about five times more efficient than that of Eco FolD. The 5,10-methenyltetrahydrofolate (5,10-CH+-THF) cyclohydrolase activity in C. perfringens is provided by another protein, FchA (5,10-CH+-THF cyclohydrolase), whose cyclohydrolase activity is similar to 10 times more efficient than that of Eco FolD. Kinetic parameters for Cpe Fhs were also determined for utilization of all of its substrates. Both Cpe FoID and Cpe FchA are required to substitute for the single bifunctional FolD in E. coli. The simultaneous presence of Cpe FoID and Cpe FchA is also necessary to rescue an E coli folD deletion strain (harbouring Cpe Fhs support) for its formate and glycine auxotrophies, and to alleviate its susceptibility to trimethoprim (an antifolate drug) or UV light. The presence of the three clostridial proteins (FolD, FchA and Fhs) is required to maintain folate homeostasis in the cell.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Campylobacter jejuni is a prevalent cause of food-borne diarrhoeal illness in humans. Understanding of the physiological and metabolic capabilities of the organism is limited. We report a detailed analysis of the C. jejuni growth cycle in batch culture. Combined transcriptomic, phenotypic and metabolic analysis demonstrates a highly dynamic 'stationary phase', characterized by a peak in motility, numerous gene expression changes and substrate switching, despite transcript changes that indicate a metabolic downshift upon the onset of stationary phase. Video tracking of bacterial motility identifies peak activity during stationary phase. Amino acid analysis of culture supernatants shows a preferential order of amino acid utilization. Proton NMR (1H-NMR) highlights an acetate switch mechanism whereby bacteria change from acetate excretion to acetate uptake, most probably in response to depletion of other substrates. Acetate production requires pta (Cj0688) and ackA (Cj0689), although the acs homologue (Cj1537c) is not required. Insertion mutants in Cj0688 and Cj0689 maintain viability less well during the stationary and decline phases of the growth cycle than wild-type C. jejuni, suggesting that these genes, and the acetate pathway, are important for survival.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The endosymbiosis of algae with invertebrates may be viewed with at least two major orientations. On the one hand, one may focus on the plant and animal as essentially separate organisms living together, as the word symbiosis states. The products which are exchanged between the plant and animal and the effects of the association on either partner are then of particular interest. On the other hand, one may consider the partnership as an entity, and attempt to investigate the physiology, behavior, etc. of the symbiotic association, observing what differences may appear between the "plant-animal" and analogous non-symbiotic organisms. It is the second approach which I have tried to take in this thesis. I have concentrated on some effects of light on symbiotic and aposymbiotic sea anemones of the species Anthopleura elegantissima, particularly with respect to pigmentation and several types of behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In response to infection or tissue dysfunction, immune cells develop into highly heterogeneous repertoires with diverse functions. Capturing the full spectrum of these functions requires analysis of large numbers of effector molecules from single cells. However, currently only 3-5 functional proteins can be measured from single cells. We developed a single cell functional proteomics approach that integrates a microchip platform with multiplex cell purification. This approach can quantitate 20 proteins from >5,000 phenotypically pure single cells simultaneously. With a 1-million fold miniaturization, the system can detect down to ~100 molecules and requires only ~104 cells. Single cell functional proteomic analysis finds broad applications in basic, translational and clinical studies. In the three studies conducted, it yielded critical insights for understanding clinical cancer immunotherapy, inflammatory bowel disease (IBD) mechanism and hematopoietic stem cell (HSC) biology.

To study phenotypically defined cell populations, single cell barcode microchips were coupled with upstream multiplex cell purification based on up to 11 parameters. Statistical algorithms were developed to process and model the high dimensional readouts. This analysis evaluates rare cells and is versatile for various cells and proteins. (1) We conducted an immune monitoring study of a phase 2 cancer cellular immunotherapy clinical trial that used T-cell receptor (TCR) transgenic T cells as major therapeutics to treat metastatic melanoma. We evaluated the functional proteome of 4 antigen-specific, phenotypically defined T cell populations from peripheral blood of 3 patients across 8 time points. (2) Natural killer (NK) cells can play a protective role in chronic inflammation and their surface receptor – killer immunoglobulin-like receptor (KIR) – has been identified as a risk factor of IBD. We compared the functional behavior of NK cells that had differential KIR expressions. These NK cells were retrieved from the blood of 12 patients with different genetic backgrounds. (3) HSCs are the progenitors of immune cells and are thought to have no immediate functional capacity against pathogen. However, recent studies identified expression of Toll-like receptors (TLRs) on HSCs. We studied the functional capacity of HSCs upon TLR activation. The comparison of HSCs from wild-type mice against those from genetics knock-out mouse models elucidates the responding signaling pathway.

In all three cases, we observed profound functional heterogeneity within phenotypically defined cells. Polyfunctional cells that conduct multiple functions also produce those proteins in large amounts. They dominate the immune response. In the cancer immunotherapy, the strong cytotoxic and antitumor functions from transgenic TCR T cells contributed to a ~30% tumor reduction immediately after the therapy. However, this infused immune response disappeared within 2-3 weeks. Later on, some patients gained a second antitumor response, consisted of the emergence of endogenous antitumor cytotoxic T cells and their production of multiple antitumor functions. These patients showed more effective long-term tumor control. In the IBD mechanism study, we noticed that, compared with others, NK cells expressing KIR2DL3 receptor secreted a large array of effector proteins, such as TNF-α, CCLs and CXCLs. The functions from these cells regulated disease-contributing cells and protected host tissues. Their existence correlated with IBD disease susceptibility. In the HSC study, the HSCs exhibited functional capacity by producing TNF-α, IL-6 and GM-CSF. TLR stimulation activated the NF-κB signaling in HSCs. Single cell functional proteome contains rich information that is independent from the genome and transcriptome. In all three cases, functional proteomic evaluation uncovered critical biological insights that would not be resolved otherwise. The integrated single cell functional proteomic analysis constructed a detail kinetic picture of the immune response that took place during the clinical cancer immunotherapy. It revealed concrete functional evidence that connected genetics to IBD disease susceptibility. Further, it provided predictors that correlated with clinical responses and pathogenic outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Iterative in situ click chemistry (IISCC) is a robust general technology for development of high throughput, inexpensive protein detection agents. In IISCC, the target protein acts as a template and catalyst, and assembles its own ligand from modular blocks of peptides. This process of ligand discovery is iterated to add peptide arms to develop a multivalent ligand with increased affinity and selectivity. The peptide based protein capture agents (PCC) should ideally have the same degree of selectivity and specificity as a monoclonal antibody, along with improved chemical stability. We had previously reported developing a PCC agent against bovine carbonic anhydrase II (bCAII) that could replace a polyclonal antibody. To further enhance the affinity or specificity of the PCC agent, I explore branching the peptide arms to develop branched PCC agents against bCAII. The developed branched capture agents have two to three fold higher affinities for the target protein. In the second part of my thesis, I describe the epitope targeting strategy, a strategy for directing the development of a peptide ligand against specific region or fragment of the protein. The strategy is successfully demonstrated by developing PCC agents with low nanomolar binding affinities that target the C-terminal hydrophobic motif of Akt2 kinase. One of the developed triligands inhibits the kinase activity of Akt. This suggests that, if targeted against the right epitope, the PCC agents can also influence the functional properties of the protein. The exquisite control of the epitope targeting strategy is further demonstrated by developing a cyclic ligand against Akt2. The cyclic ligand acts as an inhibitor by itself, without any iteration of the ligand discovery process. The epitope targeting strategy is a cornerstone of the IISCC technology and opens up new opportunities, leading to the development of protein detection agents and of modulators of protein functions.