938 resultados para Theil’s uncertainty coefficient
Resumo:
Uncertainties associated with the structural model and measured vibration data may lead to unreliable damage detection. In this paper, we show that geometric and measurement uncertainty cause considerable problem in damage assessment which can be alleviated by using a fuzzy logic-based approach for damage detection. Curvature damage factor (CDF) of a tapered cantilever beam are used as damage indicators. Monte Carlo simulation (MCS) is used to study the changes in the damage indicator due to uncertainty in the geometric properties of the beam. Variation in these CDF measures due to randomness in structural parameter, further contaminated with measurement noise, are used for developing and testing a fuzzy logic system (FLS). Results show that the method correctly identifies both single and multiple damages in the structure. For example, the FLS detects damage with an average accuracy of about 95 percent in a beam having geometric uncertainty of 1 percent COV and measurement noise of 10 percent in single damage scenario. For multiple damage case, the FLS identifies damages in the beam with an average accuracy of about 94 percent in the presence of above mentioned uncertainties. The paper brings together the disparate areas of probabilistic analysis and fuzzy logic to address uncertainty in structural damage detection.
Resumo:
The behaviour of laterally loaded piles is considerably influenced by the uncertainties in soil properties. Hence probabilistic models for assessment of allowable lateral load are necessary. Cone penetration test (CPT) data are often used to determine soil strength parameters, whereby the allowable lateral load of the pile is computed. In the present study, the maximum lateral displacement and moment of the pile are obtained based on the coefficient of subgrade reaction approach, considering the nonlinear soil behaviour in undrained clay. The coefficient of subgrade reaction is related to the undrained shear strength of soil, which can be obtained from CPT data. The soil medium is modelled as a one-dimensional random field along the depth, and it is described by the standard deviation and scale of fluctuation of the undrained shear strength of soil. Inherent soil variability, measurement uncertainty and transformation uncertainty are taken into consideration. The statistics of maximum lateral deflection and moment are obtained using the first-order, second-moment technique. Hasofer-Lind reliability indices for component and system failure criteria, based on the allowable lateral displacement and moment capacity of the pile section, are evaluated. The geotechnical database from the Konaseema site in India is used as a case example. It is shown that the reliability-based design approach for pile foundations, considering the spatial variability of soil, permits a rational choice of allowable lateral loads.
Resumo:
The ratio of diffusion coefficient to mobility (D/¿) for electrons has been measured in SF6-air and freon-nitrogen mixtures for various concentrations of SF6 and freon in the mixtures over the range 140¿ E/p¿ 220 V.cm-1 - torr-1. In SF6-air mixtures, the values of D/¿ were always observed to lie intermediate between the values for the pure gases. However, in freon-nitrogen mixtures, with a small concentration (10 percent) of freon in the mixture, the values of D/¿ are found to lie above the boundaries determined by the pure gases. In this mixture, over the lower E/p range (140 to 190) the electrons appear to lose a large fraction of their energy by the excitation of the complex freon molecules, while at higher E/p values (200 to 240), the excitation and consequent deexcitation of nitrogen molecules and its metastables seem to cause an increased rate of ionization of freon molecules.
Resumo:
The stress-optic coefficient (n3/2)(q11-q12) has been determined for a series of 18 optical glasses of different compositions in the wavelength range 5700-3200 Å. The coefficients are negative for all the glasses except for a high-lead-content glass of density 6·7 and refractive index 1·89. The numerical value of the coefficient decreases as one proceeds to the ultraviolet. This behaviour is just the opposite of what is observed in fused silica. By applying Mueller's theory, the strain polarizability constant and its dispersion have been evaluated.
Resumo:
Hydrologic impacts of climate change are usually assessed by downscaling the General Circulation Model (GCM) output of large-scale climate variables to local-scale hydrologic variables. Such an assessment is characterized by uncertainty resulting from the ensembles of projections generated with multiple GCMs, which is known as intermodel or GCM uncertainty. Ensemble averaging with the assignment of weights to GCMs based on model evaluation is one of the methods to address such uncertainty and is used in the present study for regional-scale impact assessment. GCM outputs of large-scale climate variables are downscaled to subdivisional-scale monsoon rainfall. Weights are assigned to the GCMs on the basis of model performance and model convergence, which are evaluated with the Cumulative Distribution Functions (CDFs) generated from the downscaled GCM output (for both 20th Century [20C3M] and future scenarios) and observed data. Ensemble averaging approach, with the assignment of weights to GCMs, is characterized by the uncertainty caused by partial ignorance, which stems from nonavailability of the outputs of some of the GCMs for a few scenarios (in Intergovernmental Panel on Climate Change [IPCC] data distribution center for Assessment Report 4 [AR4]). This uncertainty is modeled with imprecise probability, i.e., the probability being represented as an interval gray number. Furthermore, the CDF generated with one GCM is entirely different from that with another and therefore the use of multiple GCMs results in a band of CDFs. Representing this band of CDFs with a single valued weighted mean CDF may be misleading. Such a band of CDFs can only be represented with an envelope that contains all the CDFs generated with a number of GCMs. Imprecise CDF represents such an envelope, which not only contains the CDFs generated with all the available GCMs but also to an extent accounts for the uncertainty resulting from the missing GCM output. This concept of imprecise probability is also validated in the present study. The imprecise CDFs of monsoon rainfall are derived for three 30-year time slices, 2020s, 2050s and 2080s, with A1B, A2 and B1 scenarios. The model is demonstrated with the prediction of monsoon rainfall in Orissa meteorological subdivision, which shows a possible decreasing trend in the future.
Resumo:
Assessing build-up and wash-off process uncertainty is important for accurate interpretation of model outcomes to facilitate informed decision making for developing effective stormwater pollution mitigation strategies. Uncertainty inherent to pollutant build-up and wash-off processes influences the variations in pollutant loads entrained in stormwater runoff from urban catchments. However, build-up and wash-off predictions from stormwater quality models do not adequately represent such variations due to poor characterisation of the variability of these processes in mathematical models. The changes to the mathematical form of current models with the incorporation of process variability, facilitates accounting for process uncertainty without significantly affecting the model prediction performance. Moreover, the investigation of uncertainty propagation from build-up to wash-off confirmed that uncertainty in build-up process significantly influences wash-off process uncertainty. Specifically, the behaviour of particles <150µm during build-up primarily influences uncertainty propagation, resulting in appreciable variations in the pollutant load and composition during a wash-off event.
Resumo:
Uncertainty inherent to heavy metal build-up and wash-off stems from process variability. This results in inaccurate interpretation of stormwater quality model predictions. The research study has characterised the variability in heavy metal build-up and wash-off processes based on the temporal variations in particle-bound heavy metals commonly found on urban roads. The study outcomes found that the distribution of Al, Cr, Mn, Fe, Ni, Cu, Zn, Cd and Pb were consistent over particle size fractions <150µm and >150µm, with most metals concentrated in the particle size fraction <150µm. When build-up and wash-off are considered as independent processes, the temporal variations in these processes in relation to the heavy metals load are consistent with variations in the particulate load. However, the temporal variations in the load in build-up and wash-off of heavy metals and particulates are not consistent for consecutive build-up and wash-off events that occur on a continuous timeline. These inconsistencies are attributed to interactions between heavy metals and particulates <150µm and >150µm, which are influenced by particle characteristics such as organic matter content. The behavioural variability of particles determines the variations in the heavy metals load entrained in stormwater runoff. Accordingly, the variability in build-up and wash-off of particle-bound pollutants needs to be characterised in the description of pollutant attachment to particulates in stormwater quality modelling. This will ensure the accounting of process uncertainty, and thereby enhancing the interpretation of the outcomes derived from modelling studies.
Resumo:
There are some scenarios in which Unmmaned Aerial Vehicle (UAV) navigation becomes a challenge due to the occlusion of GPS systems signal, the presence of obstacles and constraints in the space in which a UAV operates. An additional challenge is presented when a target whose location is unknown must be found within a confined space. In this paper we present a UAV navigation and target finding mission, modelled as a Partially Observable Markov Decision Process (POMDP) using a state-of-the-art online solver in a real scenario using a low cost commercial multi rotor UAV and a modular system architecture running under the Robotic Operative System (ROS). Using POMDP has several advantages to conventional approaches as they take into account uncertainties in sensor information. We present a framework for testing the mission with simulation tests and real flight tests in which we model the system dynamics and motion and perception uncertainties. The system uses a quad-copter aircraft with an board downwards looking camera without the need of GPS systems while avoiding obstacles within a confined area. Results indicate that the system has 100% success rate in simulation and 80% rate during flight test for finding targets located at different locations.
Resumo:
The Baltic Sea is a geologically young, large brackish water basin, and few of the species living there have fully adapted to its special conditions. Many of the species live on the edge of their distribution range in terms of one or more environmental variables such as salinity or temperature. Environmental fluctuations are know to cause fluctuations in populations abundance, and this effect is especially strong near the edges of the distribution range, where even small changes in an environmental variable can be critical to the success of a species. This thesis examines which environmental factors are the most important in relation to the success of various commercially exploited fish species in the northern Baltic Sea. It also examines the uncertainties related to fish stocks current and potential status as well as to their relationship with their environment. The aim is to quantify the uncertainties related to fisheries and environmental management, to find potential management strategies that can be used to reduce uncertainty in management results and to develop methodology related to uncertainty estimation in natural resources management. Bayesian statistical methods are utilized due to their ability to treat uncertainty explicitly in all parts of the statistical model. The results show that uncertainty about important parameters of even the most intensively studied fish species such as salmon (Salmo salar L.) and Baltic herring (Clupea harengus membras L.) is large. On the other hand, management approaches that reduce uncertainty can be found. These include utilising information about ecological similarity of fish stocks and species, and using management variables that are directly related to stock parameters that can be measured easily and without extrapolations or assumptions.
Resumo:
There has been a recent spate of high profile infrastructure cost overruns in Australia and internationally. This is just the tip of a longer-term and more deeply-seated problem with initial budget estimating practice, well recognised in both academic research and industry reviews: the problem of uncertainty. A case study of the Sydney Opera House is used to identify and illustrate the key causal factors and system dynamics of cost overruns. It is conventionally the role of risk management to deal with such uncertainty, but the type and extent of the uncertainty involved in complex projects is shown to render established risk management techniques ineffective. This paper considers a radical advance on current budget estimating practice which involves a particular approach to statistical modelling complemented by explicit training in estimating practice. The statistical modelling approach combines the probability management techniques of Savage, which operate on actual distributions of values rather than flawed representations of distributions, and the data pooling technique of Skitmore, where the size of the reference set is optimised. Estimating training employs particular calibration development methods pioneered by Hubbard, which reduce the bias of experts caused by over-confidence and improve the consistency of subjective decision-making. A new framework for initial budget estimating practice is developed based on the combined statistical and training methods, with each technique being explained and discussed.
Resumo:
We describe a noniterative method for recovering optical absorption coefficient distribution from the absorbed energy map reconstructed using simulated and noisy boundary pressure measurements. The source reconstruction problem is first solved for the absorbed energy map corresponding to single- and multiple-source illuminations from the side of the imaging plane. It is shown that the absorbed energy map and the absorption coefficient distribution, recovered from the single-source illumination with a large variation in photon flux distribution, have signal-to-noise ratios comparable to those of the reconstructed parameters from a more uniform photon density distribution corresponding to multiple-source illuminations. The absorbed energy map is input as absorption coefficient times photon flux in the time-independent diffusion equation (DE) governing photon transport to recover the photon flux in a single step. The recovered photon flux is used to compute the optical absorption coefficient distribution from the absorbed energy map. In the absence of experimental data, we obtain the boundary measurements through Monte Carlo simulations, and we attempt to address the possible limitations of the DE model in the overall reconstruction procedure.
Resumo:
Relatively few studies have addressed water management and adaptation measures in the face of changing water balances due to climate change. The current work studies climate change impact on a multipurpose reservoir performance and derives adaptive policies for possible futurescenarios. The method developed in this work is illustrated with a case study of Hirakud reservoir on the Mahanadi river in Orissa, India,which is a multipurpose reservoir serving flood control, irrigation and power generation. Climate change effects on annual hydropower generation and four performance indices (reliability with respect to three reservoir functions, viz. hydropower, irrigation and flood control, resiliency, vulnerability and deficit ratio with respect to hydropower) are studied. Outputs from three general circulation models (GCMs) for three scenarios each are downscaled to monsoon streamflow in the Mahanadi river for two future time slices, 2045-65 and 2075-95. Increased irrigation demands, rule curves dictated by increased need for flood storage and downscaled projections of streamflow from the ensemble of GCMs and scenarios are used for projecting future hydrologic scenarios. It is seen that hydropower generation and reliability with respect to hydropower and irrigation are likely to show a decrease in future in most scenarios, whereas the deficit ratio and vulnerability are likely to increase as a result of climate change if the standard operating policy (SOP) using current rule curves for flood protection is employed. An optimal monthly operating policy is then derived using stochastic dynamic programming (SDP) as an adaptive policy for mitigating impacts of climate change on reservoir operation. The objective of this policy is to maximize reliabilities with respect to multiple reservoir functions of hydropower, irrigation and flood control. In variations to this adaptive policy, increasingly more weightage is given to the purpose of maximizing reliability with respect to hydropower for two extreme scenarios. It is seen that by marginally sacrificing reliability with respect to irrigation and flood control, hydropower reliability and generation can be increased for future scenarios. This suggests that reservoir rules for flood control may have to be revised in basins where climate change projects an increasing probability of droughts. However, it is also seen that power generation is unable to be restored to current levels, due in part to the large projected increases in irrigation demand. This suggests that future water balance deficits may limit the success of adaptive policy options. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This is an ethnographic study, in the field of medical anthropology, of village life among farmers in southwest Finland. It is based on 12 months of field work conducted 2002-2003 in a coastal village. The study discusses how social and cultural change affects the life of farmers, how they experience it and how they act in order to deal with the it. Using social suffering as a methodological approach the study seeks to investigate how change is related to lived experiences, idioms of distress, and narratives. Its aim has been to draw a locally specific picture of what matters are at stake in the local moral world that these farmers inhabit, and how they emerge as creative actors within it. A central assumption made about change is that it is two-fold; both a constructive force which gives birth to something new, and also a process that brings about uncertainty regarding the future. Uncertainty is understood as an existential condition of human life that demands a response, both causing suffering and transforming it. The possibility for positive outcomes in the future enables one to understand this small suffering of everyday life both as a consequence of social change, which fragments and destroys, and as an answer to it - as something that is positively meaningful. Suffering is seen to engage individuals to ensure continuity, in spite of the odds, and to sustain hope regarding the future. When the fieldwork was initiated Finland had been a member of the European Union for seven years and farmers felt it had substantially impacted on their working conditions. They complained about the restrictions placed on their autonomy and that their knowledge was neither recognised, nor respected by the bureaucrats of the EU system. New regulations require them to work in a manner that is morally unacceptable to them and financial insecurity has become more prominent. All these changes indicate the potential loss of the home and of the ability to ensure continuity of the family farm. Although the study initially focused on getting a general picture of working conditions and the nature of farming life, during the course of the fieldwork there was repeated mention of a perceived high prevalence of cancer in the area. This cancer talk is replete with metaphors that reveal cultural meanings tied to the farming life and the core values of autonomy, endurance and permanence. It also forms the basis of a shared identity and a means of delivering a moral message about the fragmentation of the good life; the loss of control; and the invasion of the foreign. This thesis formed part of the research project Expressions of Suffering. Ethnographies of Illness Experiences in Contemporary Finnish Contexts funded by the Academy of Finland. It opens up a vital perspective on the multiplicity and variety of the experience of suffering and that it is particularly through the use of the ethnographic method that these experiences can be brought to light. Keywords: suffering, uncertainty, phenomenology, habitus, agency, cancer, farming