925 resultados para Tensile pre-strain


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The notch and strain rate sensitivity of non-crimp glass fibre/vinyl-ester laminates subjected to uniaxial tensile loads has been investigated experimentally. Two sets of notch configurations were tested; one where circular holes were drilled and another where fragment simulating projectiles were fired through the plate creating a notch. Experiments were conducted for strain rates ranging from 10-4 s-1 to 102 s-1 using servo hydraulic machines. A significant increase in strength with increasing strain rate was observed for both notched and un-notched specimens. High speed photography revealed changes in failure mode, for certain laminate configurations, as the strain rate increased. The tested laminate configurations showed fairly small notch sensitivity for the whole range of strain rates. © 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The notch and strain rate sensitivity of non-crimp glass fibre/vinyl-ester laminates subjected to uniaxial tensile loads has been investigated experimentally. Two set of notch configurations were tested; one where circular holes were drilled and another where fragment simulating projectiles were fired through the plate creating a notch. Experiments were conducted for strain rates ranging from 10-4/s to 102/s using servo hydraulic machines. A significant increase in strength with increasing strain rate was observed for both notched and unnotched specimens. High speed photography revealed changes in failure mode, for certain laminate configurations, as the strain rate increased. The tested laminate configurations showed fairly small notch sensitivity for the whole range of strain rates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper deals with the static analysis of pre-damaged Euler-Bernoulli beams with any number of unilateral cracks and subjected to tensile or compression forces combined with arbitrary transverse loads. The mathematical representation of cracks with a bilateral behaviour (i.e. always open) via Dirac delta functions is extended by introducing a convenient switching variable, which allows each crack to be open or closed depending on the sign of the axial strain at the crack centre. The proposed model leads to analytical solutions, which depend on four integration constants (to be computed by enforcing the boundary conditions) along with the Boolean switching variables associated with the cracks (whose role is to turn on and off the additional flexibility due to the presence of the cracks). An efficient computational procedure is also presented and numerically validated. For this purpose, the proposed approach is applied to two pre-damaged beams, with different damage and loading conditions, and the results so obtained are compared against those given by a standard finite element code (in which the correct opening of the cracks is pre-assigned), always showing a perfect agreement. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Molecular dynamics simulations with the Tersoff potential were used to study the response of twinned SiC nanowires under tensile and compressive strain. The critical strain of the twinned nanowires can be enhanced by twin stacking faults, and their critical strains are larger than those of perfect nanowires with the same diameters. Under axial tensile strain, the bonds of the nanowires are stretched just before failure. The failure behavior is found to depend on the twin segment thickness and the diameter of the nanowires. An atomic chain is observed for thin nanowires with small twin segment thickness under tension strain. Under axial compressive strain, the collapse of twinned SiC nanowires exhibits two different failure modes, depending on the length and diameter of the nanowires, i.e., shell buckling for short nanowires and columnar buckling for longer nanowires.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a recent letter, Hsieh reported the growth of high-quality Ge epilayers with a SiGe buffer thickness of only 0.45 mu m, a surface root-mean-square roughness of less than 0.4 nm, and a threading dislocation of 7.6 x 10(6) cm(-2) on Si+ pre-ion-implantation Si substrate utilizing of strain relaxation enhancement by point defects and interface blocking of the dislocations. Our comment has focused on x-ray diffraction data shown in Fig. 3 of Ref. 1. We demonstrate that the strain in Ge epilayers is tensile, rather than compressive as misunderstood by the authors. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.3003873]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tensile-strained GaAsP/GaInP single quantum well (QW) laser diode (I-D) structures have been grown by low-pressure metal organic chemical vapor deposition (LP-MOCVD) and related photoluminescence (PL) properties have been investigated in detail. The samples have the same well thickness of 16 nm but different P compositions in a GaAsP QW. Two peaks in room temperature (RT) PL spectra are observed for samples with a composition larger than 0.10. Temperature and excitation-power-dependent PL spectra have been measured for a sample with it P composition of 0.15. It is found that the two peaks have a 35 meV energy separation independent of temperature and only the low-energy peak exists below 85 K. Additionally, both peak intensities exhibit a monotonous increase as excitation power increases. Analyses indicate that the two peaks arise from the intrinsic-exciton recombination mechanisms of electron-heavy hole (e-hh) and electron-light hole (e-hh). A theoretical calculation based oil model-solid theory, taking, into account the spin-orbit splitting energy, shows good agreement with our experimental results. The temperature dependence of PL intensity ratio is well explained using the spontaneous emission theory for e-hh and e-hh transitions. front which the ratio can be characterized mainly by the energy separation between the fill and Ill states.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hole subband structures and effective masses of tensile strained Si/Si1-yGey quantum wells are calculated by using the 6x6 k.p method. The results show that when the tensile strain is induced in the quantum well, the light-hole state becomes the ground state, and the light hole effective masses in the growth direction are strongly reduced while the in-plane effective masses are considerable. Quantitative calculation of the valence intersubband transition between two light hole states in a 7nm tensile strained Si/Si0.55Ge0.45 quantum well grown on a relaxed Si0.5Ge0.5 (100) substrates shows a large absorption coefficient of 8400 cm(-1).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel broadband superluminescent diode (SLD), which has a symmetric graded tensile-strained bulk InGaAs active region, is developed. The symmetric-graded tensile-strained bulk InGaAs is achieved by changing the group III TMGa source flow only during its growth process by low-pressure metalorganic vapor-phase epitaxy (LP-MOVPE), in which the much different tensile strain is introduced simultaneously. At 200mA injection current, the full width at half maximum (FWHM) of the emission spectrum of the SLID can be up to 122nm, covering the range of 1508-1630nm, and the output power is 11.5mW.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The strain evolution of a GaN layer grown on a high- temperature AlN interlayer with varying AlN thickness by metalorganic chemical vapour deposition is investigated. In the growth process, the growth strain changes from compression to tension in the top GaN layer, and the thickness at which the compressive- to- tensile strain transition takes place is strongly influenced by the thickness of the AlN interlayer. It is confirmed from the x- ray diffraction results that the AlN interlayer has a remarkable effect on introducing relative compressive strain to the top GaN layer. The strain transition process during the growth of the top GaN layer can be explained by the threading dislocation inclination in the top GaN layer. Adjusting the AlN interlayer thickness could change the density of the threading dislocations in the top GaN layer and then change the stress evolution during the top GaN layer's growth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-quality AlInGaN quaternary layers were grown on c-Al2O3 using a thick GaN template. A full width at half maximum of 0.075 degrees from AlInGaN(0004) rocking curve and a minimum yield of 5.6% from Rutherford backscattering/channelling spectrometry (RBS) prove the AlInGaN layer of a comparable crystalline quality with GaN layers. The chemical compositions (both of Al and In contents) of AlInGaN layers are directly obtained from RBS and elastic recoil detection analysis. The lattice parameters both in perpendicular and parallel directions are deduced from X-ray diffraction. The AlInGaN layer is found to process a compressive strain in parallel direction and a tensile strain in perpendicular direction. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The strain evolution of the GaN layer grown on a high-temperature AlN interlayer with GaN template by metal organic chemical vapor deposition is investigated. It is found that the layer is initially under compressive strain and then gradually relaxes and transforms to under tensile strain with increasing film thickness. The result of the in situ stress analysis is confirmed by x-ray diffraction measurements. Transmission electron microscopy analysis shows that the inclination of edge and mixed threading dislocations rather than the reduction of dislocation density mainly accounts for such a strain evolution. (c) 2006 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wafer bonding between p-Si and an n-InP-based InGaAsP multiple quantum well (MQW) wafer was achieved by a direct wafer bonding method. In order to investigate the strain at different annealing temperatures, four pre-bonded pairs were selected, and pair one was annealed at 150 degrees C, pair two at 250 degrees C, pair three at 350 degrees C, and pair four at 450 degrees C, respectively. The macroscopical strains on the bonded epitaxial layer include two parts, namely the internal strain and the strain caused by the mismatching of the crystalline orientation between InP (100) and Si (100). These strains were measured by the X-ray double crystalline diffraction, and theoretical calculations of the longitudinal and perpendicular thermal strains at different annealing temperatures were calculated using the bi-metal thermostats model, both the internal strain and the thermal strain increase with the annealing temperature. Normal thermal stress and the elastic biaxial thermal strain energy were also calculated using this model. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By using reflectance difference spectroscopy we have studied the in-plane optical anisotropy of GaAs surfaces covered by ultrathin InAs layers. The strain evolution of the GaAs surface with the InAs deposition thickness can be obtained. It is found that the optical anisotropy and the surface tensile strain attain maximum values at the onset of the formation of InAs quantum dots (QDs) and then decrease rapidly as more InAs QDs are formed with the increase of InAs deposition. The origin of the optical anisotropy has been discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structural and optical properties of GaAsSb/GaAs quantum wells (QWs) and strain-compensated GaAsP/GaAs/GaAsSb/GaAs/GaAsP QWs grown on a GaAs substrate by molecular beam epitaxy are investigated using high-resolution x-ray diffraction and photoluminescence (PL) measurements. We demonstrated that the insertion of tensile GaAsP layers into the active region of GaAsSb/GaAs QWs effectively improves the structural and optical quality. Even the Sb composition is as high as 0.39. The PL spectra at 11 K and room temperature indicate that the PL peak of strain-compensated QWs has a narrower linewidth and higher intensity in comparison to the sample without strain compensation. The results of PL peak blueshift with increasing excitation show the strain-compensated GaAsSb/GaAs interface characteristic of type-I band alignment. (C) 2003 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reduction of residual strain in cubic GaN growth by inserting a thermoannealing process is investigated. It is found that the epilayer with smaller tensile strain is subject to a wider optimal "growth window." Based on this process, we obtain the high-quality GaN film of pure cubic phase with the thickness of 4 mum by metalorganic chemical vapor deposition. The photoluminescence spectrum at room temperature shows the thick GaN layer has a near-band emission peak with a full width at half maximum of 42 meV which confirms its high crystal quality, further supported by the x-ray (002) diffraction measurement. A simplified model is demonstrated to interpret this strain effect on the growth process. (C) 2003 American Institute of Physics.