432 resultados para Tangential microfiltration
Resumo:
O cultivo de microalgas é uma matéria prima para produção de biocombustível e de captura de carbono devido a vantagens como alta produção de biomassa e rápido crescimento quando comparado com outras fontes de energia e não necessitar de terra fértil. O presente trabalho teve como objetivo estudar métodos de concentração da biomassa. A microalga utilizada foi a Isochrysis galbana. Os cultivos tiveram duração de 20 dias e concentração inicial de 7.104 cel/mL no meio de cultivo F2/Guillard. e foram realizados em fotobioreatores de 500 mL, 3 L e 12 L. Os experimentos foram conduzidos em foto-período de 12 h claro/escuro, com temperatura de 27 a 29 C. Ao final dos cultivos, as amostras foram levadas para a sequência de processos de separação. Inicialmente, foram realizados ensaios de microfiltração em membrana com porosidade de 0,45 m em procedimento do tipo dead-end e constatou-se a rápida e intensa formação de camada de fouling. Acrescentou-se uma etapa de separação por floculação preliminar à microfiltração, utilizando-se Al2(SO4)3 como agente floculante. O meio coagulado foi então filtrado e microfiltrado. O estudo combinado das 3 etapas de separação possibilitou 99% de remoção de biomassa.O teor de óleo obtido foi de 22,4%. Portanto, o trabalho apresenta uma configuração de concentração da biomassa Isochrysis galbana visando o processo de produção de biocombustíveis
Resumo:
Part I
The slow, viscous flow past a thin screen is analyzed based on Stokes equations. The problem is reduced to an associated electric potential problem as introduced by Roscoe. Alternatively, the problem is formulated in terms of a Stokeslet distribution, which turns out to be equivalent to the first approach.
Special interest is directed towards the solution of the Stokes flow past a circular annulus. A "Stokeslet" formulation is used in this analysis. The problem is finally reduced to solving a Fredholm integral equation of the second kind. Numerical data for the drag coefficient and the mean velocity through the hole of the annulus are obtained.
Stokes flow past a circular screen with numerous holes is also attempted by assuming a set of approximate boundary conditions. An "electric potential" formulation is used, and the problem is also reduced to solving a Fredholm integral equation of the second kind. Drag coefficient and mean velocity through the screen are computed.
Part II
The purpose of this investigation is to formulate correctly a set of boundary conditions to be prescribed at the interface between a viscous flow region and a porous medium so that the problem of a viscous flow past a porous body can be solved.
General macroscopic equations of motion for flow through porous media are first derived by averaging Stokes equations over a volume element of the medium. These equations, including viscous stresses for the description, are more general than Darcy's law. They reduce to Darcy's law when the Darcy number becomes extremely small.
The interface boundary conditions of the first kind are then formulated with respect to the general macroscopic equations applied within the porous region. An application of such equations and boundary conditions to a Poiseuille shear flow problem demonstrates that there usually exists a thin interface layer immediately inside the porous medium in which the tangential velocity varies exponentially and Darcy's law does not apply.
With Darcy's law assumed within the porous region, interface boundary conditions of the second kind are established which relate the flow variables across the interface layer. The primary feature is a jump condition on the tangential velocity, which is found to be directly proportional to the normal gradient of the tangential velocity immediately outside the porous medium. This is in agreement with the experimental results of Beavers, et al.
The derived boundary conditions are applied in the solutions of two other problems: (1) Viscous flow between a rotating solid cylinder and a stationary porous cylinder, and (2) Stokes flow past a porous sphere.
Resumo:
A presente dissertação analisa como a lógica do capital penetrou na saúde como resultado da necessidade de expansão das forças produtivas. O que se pretende confirmar é o processo no qual o capital, ao metamorfosear sua necessidade em necessidade universal, amplia suas bases de produção e faz parecer que, para alcançar níveis melhores de saúde, toda área precise depender de injeções cada vez mais vultuosas de capitais. Essa dependência, em suma ideológica, produz e cria os meios para a reprodução de suas contradições em todos os ramos da área de saúde. É nessa esteira que o capital portador de juros passa a determinar os processos de produção e reprodução na área, com o objetivo de alcançar lucros exorbitantes, ao ponto de sentenciar centenas de milhares de vidas a incerteza, a dor e até a morte do corpo e da alma pela falta de assistência das políticas de saúde. Problematiza-se os projetos em disputa na saúde, ressaltando o projeto contra-hegemônico da Reforma Sanitária elaborado nos anos 1970. Aborda-se a saúde por sua relevância e necessidade de transpô-la ao patamar de valor humanitário, a partir de uma inquietação tangencial, aos processos vivenciados no cotidiano entre aqueles que trabalham, para possibilitar o acesso a uma multidão cada vez maior e mais diversificada que requer, enquanto trabalhadores, direitos aos produtos e aos serviços de saúde. Tomando a referência do complexo industrial da saúde, no contexto de hegemonia do capital financeiro, evidencia-se sua consolidação na ampliação da acumulação e concentração frente à histórica necessidade do capital de assentar-se em bases materiais e de articular-se ao capital portador de juros. Na atualidade esse processo sustenta este modo de produção e garante sua produção/reprodução por meio da invenção crescente de capitais fictícios. No Brasil, ao passo que as políticas sociais são privatizadas, a concentração de capitais, os planos de investimento e crescimento das empresas por participação acionária são financiados com recursos públicos comprovados por meio dos programas do Banco Nacional de Desenvolvimento Social.
Resumo:
Os estudos anatômicos do xilema secundário têm contribuído com a botânica sistemática na segregação de grupos taxonômicos. Desta forma, podendo se tornar muito importante na aplicação para identificação de espécies, o que adquire maior conotação em grupos de comprovada importância econômica. O gênero Stryphnodendron apresenta uma ampla distribuição no Brasil e as espécies que o compõem são muito utilizadas com finalidades farmacológicas, no entanto existem espécies que são morfologicamente muito semelhantes neste gênero. Sendo assim, este trabalho teve como objetivos descrever a estrutura anatômica do lenho de sete espécies do gênero Stryphnodendron, identificar os caracteres que poderão ser utilizados na segregação do grupo e verificar se a anatomia do lenho corrobora a proposta de delimitação de S. polyphyllum, feitas no último trabalho de revisão taxonômica do gênero. Foram selecionadas duas espécies paucifolioladas e cinco espécies multifolioladas, o material botânico foi obtido por coleta in situ para as espécies de ocorrência na Mata Atlântica e a partir de coleções de madeira de referência para as espécies de Cerrado e Floresta Amazônica. Foram utilizadas as metodologias usuais para anatomia do lenho e as descrições seguiram em linhas gerais as recomendações a IAWA Committee. Os resultados demonstraram que as espécies apresentam características anatômicas em comum, que podem ser diagnósticas para o gênero Stryphnodendron como: camada de crescimento distinta, raios homogêneos, cristais formando séries cristalíferas no parênquima axial e nas fibras, pontoações ornamentadas e parênquima axial paratraqueal. Os resultados das análises de agrupamento e de componentes principais evidenciaram a segregação das espécies em dois grupos, um com as espécies multifolioladas e outro com espécies paucifolioladas. As espécies paucifolioladas foram segregadas por apresentarem diâmetro tangencial dos vasos superior a 200 μm e parênquima axial difuso em agregados. Os resultados também evidenciaram um conjunto de caracteres que permitiram a individualização das espécies estudadas. As características qualitativas do lenho mais importantes para segregação das espécies em questão foram: tipos de parênquima axial e de demarcação da camada de crescimento; arranjo e agrupamento dos elementos de vasos; presença de fibras gelatinosas, de fibras septadas e de espessamento helicoidal em fibras. As características quantitativas foram: frequência de vasos; comprimento das fibras; número de células na largura dos raios; altura e largura dos raios e diâmetro das pontoações parênquimo-vasculares.
Resumo:
In general, the propagating behavior of extraordinary wave in anisotropic materials is different from that in isotropic materials. With the tangential continuity of Maxwell's equations, the electromagnetic propagating behaviors have been investigated at the incident and exit interfaces of the uniaxial anisotropic thin film. The emphasis was placed on two interesting optical phenomena such as homolateral refraction behavior and wide-angle Brewster's phenomenon, which occurred at the interfaces of uniaxial anisotropic thin film.
Resumo:
A presente dissertação trata de propostas artísticas destinadas ao espaço público e que se organizam enquanto trabalhos colaborativos. Pretendemos situar a ação Atrocidades Maravilhosas (2000) enquanto proposta modificada e modulada conforme o interesse dos artistas participantes, bem como as condições ambientais as quais a ação estava sujeita. Por essa via, a investigação problematiza contextos culturais dos anos 1990 e 2000, mais especificamente, às unidades discursivas que contribuem para refletirmos sobre as ações coletivas. Pelas considerações de autores como Clair Bishop, MiwonKwon, André Mesquita e Steward Home, pretende-se pensar o espaço artístico contemporâneo ante à mercantilização da cultura vigente. Nesse ínterim, será questionada a identificação e a identidade entre atores sociais, bem como a relação entre os artistas e os espaços culturais os quais se destinam algumas propostas artísticas. Essa investigação adentra o território brasileiro do início do anos 2000 e, aponta por esse contexto, as afinidades de alguns coletivos com propostas artísticas em outras partes do mundo. Essa pesquisa trata ainda de assuntos tangente às negociações e conflitos inerentes aos projetos colaborativos a partir deles pretendemos repensar o espaço comunicacional ativado por esses grupos, buscando na descentralização dos discursos, a potência dos dissensos. Pretendemos, com esse panorama iluminar nas ações de participação efetiva, não as novas respostas ao projeto de democratização ou inclusão de culturas periféricas, mas novas perguntas sobre o antigo problema acerca da colonização cultural da arte
Resumo:
Hydrodynamic properties of the surface vortex have been investigated. Based on the Navier-Stokes equations, three sets of the new formulations for the tangential velocity distributions are derived, and verified against the experimental measurements in the literature. It is shown that one modification greatly improves the agreement with the experimental data. Physical model experiments were carried out to study the intake vortex related to the Xiluodu hydropower project. The velocity fields were measured using the Particle Tracking Velocimetry (PTV) technique. The proposed equation for tangential velocity distribution is applied to the Xiluodu project with the solid boundary being considered by the method of images. Good agreement has been observed between the formula prediction and the experimental observation. © 2010 Publishing House for Journal of Hydrodynamics.
Resumo:
Flutter and divergence instabilities have been advocated to be possible in elastic structures with Coulomb friction, but no direct experimental evidence has ever been provided. Moreover, the same types of instability can be induced by tangential follower forces, but these are commonly thought to be of extremely difficult, if not impossible, practical realization. Therefore, a clear experimental basis for flutter and divergence induced by friction or follower-loading is still lacking. This is provided for the first time in the present article, showing how a follower force of tangential type can be realized via Coulomb friction and how this, in full agreement with the theory, can induce a blowing-up vibrational motion of increasing amplitude (flutter) or an exponentially growing motion (divergence). In addition, our results show the limits of a treatment based on the linearized equations, so that nonlinearities yield the initial blowing-up vibration of flutter to reach eventually a steady state. The presented results give full evidence to potential problems in the design of mechanical systems subject to friction, open a new perspective in the realization of follower-loading systems and of innovative structures exhibiting 'unusual' dynamical behaviors. © 2011 Elsevier Ltd.
Resumo:
The effects of turbulent Reynolds number on the statistical behaviour of the displacement speed have been studied using three-dimensional Direct Numerical Simulation of statistically planar turbulent premixed flames. The probability of finding negative values of the displacement speed is found to increase with increasing turbulent Reynolds number when the Damkhler number is held constant. It has been shown that the statistical behaviour of the Surface Density Function, and its strain rate and curvature dependence, plays a key role in determining the response of the different components of displacement speed. Increasing the turbulent Reynolds number is shown to reduce the strength of the correlations between tangential strain rate and dilatation rate with curvature, although the qualitative nature of the correlations remains unaffected. The dependence of displacement speed on strain rate and curvature is found to weaken with increasing turbulent Reynolds number when either Damkhler or Karlovitz number is held constant, but the qualitative nature of the correlation remains unaltered. The implications of turbulent Reynolds number effects in the context of Flame Surface Density (FSD) modelling have also been addressed, with emphasis on the influence of displacement speed on the curvature and propagation terms in the FSD balance equation. © 2011 Nilanjan Chakraborty et al.
Resumo:
Three dimensional, fully compressible direct numerical simulations (DNS) of premixed turbulent flames are carried out in a V-flame configuration. The governing equations and the numerical implementation are described in detail, including modifications made to the Navier-Stokes Characteristic Boundary Conditions (NSCBC) to accommodate the steep transverse velocity and composition gradients generated when the flame crosses the boundary. Three cases, at turbulence intensities, u′/sL, of 1, 2, and 6 are considered. The influence of the flame holder on downstream flame properties is assessed through the distributions of the surface-conditioned displacement speed, curvature and tangential strain rates, and compared to data from similarly processed planar flames. The distributions are found to be indistinguishable from planar flames for distances greater than about 17δth downstream of the flame holder, where δth is the laminar flame thermal thickness. Favre mean fields are constructed, and the growth of the mean flame brush is found to be well described by simple Taylor type diffusion. The turbulent flame speed, sT is evaluated from an expression describing the propagation speed of an isosurface of the mean reaction progress variable c̃ in terms of the imbalance between the mean reactive, diffusive, and turbulent fluxes within the flame brush. The results are compared to the consumption speed, sC, calculated from the integral of the mean reaction rate, and to the predictions of a recently developed flame speed model (Kolla et al., Combust Sci Technol 181(3):518-535, 2009). The model predictions are improved in all cases by including the effects of mean molecular diffusion, and the overall agreement is good for the higher turbulence intensity cases once the tangential convective flux of c̃ is taken into account. © 2010 Springer Science+Business Media B.V.
Resumo:
This paper describes a new approach to model the forces on a tread block for a free-rolling tyre in contact with a rough road. A theoretical analysis based on realistic tread mechanical properties and road roughness is presented, indicating partial contact between a tread block and a rough road. Hence an asperity-scale indentation model is developed using a semi-empirical formulation, taking into account both the rubber viscoelasticity and the tread block geometry. The model aims to capture the essential details of the contact at the simplest level, to make it suitable as part of a time-domain dynamic analysis of the coupled tyre-road system. The indentation model is found to have a good correlation with the finite element (FE) predictions and is validated against experimental results using a rolling contact rig. When coupled to a deformed tyre belt profile, the indentation model predicts normal and tangential force histories inside the tyre contact patch that show good agreement with FE predictions. © 2012 Elsevier B.V..
Resumo:
This study detailed the structure of turbulence in the air-side and water-side boundary layers in wind-induced surface waves. Inside the air boundary layer, the kurtosis is always greater than 3 (the value for normal distribution) for both horizontal and vertical velocity fluctuations. The skewness for the horizontal velocity is negative, but the skewness for the vertical velocity is always positive. On the water side, the kurtosis is always greater than 3, and the skewness is slightly negative for the horizontal velocity and slightly positive for the vertical velocity. The statistics of the angle between the instantaneous vertical fluctuation and the instantaneous horizontal velocity in the air is similar to those obtained over solid walls. Measurements in water show a large variance, and the peak is biased towards negative angles. In the quadrant analysis, the contribution of quadrants Q2 and Q4 is dominant on both the air side and the water side. The non-dimensional relative contributions and the concentration match fairly well near the interface. Sweeps in the air side (belonging to quadrant Q4) act directly on the interface and exert pressure fluctuations, which, in addition to the tangential stress and form drag, lead to the growth of the waves. The water drops detached from the crest and accelerated by the wind can play a major role in transferring momentum and in enhancing the turbulence level in the water side.On the air side, the Reynolds stress tensor's principal axes are not collinear with the strain rate tensor, and show an angle α σ≈=-20°to-25°. On the water side, the angle is α σ≈=-40°to-45°. The ratio between the maximum and the minimum principal stresses is σ a/σ b=3to4 on the air side, and σ a/σ b=1.5to3 on the water side. In this respect, the air-side flow behaves like a classical boundary layer on a solid wall, while the water-side flow resembles a wake. The frequency of bursting on the water side increases significantly along the flow, which can be attributed to micro-breaking effects - expected to be more frequent at larger fetches. © 2012 Elsevier B.V.
Resumo:
This paper is aimed at enabling the confident use of existing model test facilities for ultra deepwater application without having to compromise on the widely accepted range of scales currently used by the floating production industry. Passive line truncation has traditionally been the preferred method of creating an equivalent numerical model at reduced depth; however, these techniques tend to suffer in capturing accurately line dynamic response and so reproducing peak tensions. In an attempt to improve credibility of model test data the proposed truncation procedure sets up the truncated model, based on line dynamic response rather than quasi-static system stiffness. The upper sections of each line are modeled in detail, capturing the wave action zone and all coupling effects with the vessel. These terminate to an approximate analytical model that aims to simulate the remainder of the line. Stages 1 & 2 are used to derive a water depth truncation ratio. Here vibration decay of transverse elastic waves is assessed and it is found that below a certain length criterion, the transverse vibrational characteristics for each line are inertia driven, hence with respect to these motions the truncated model can assume a linear damper whose coefficient depends on the local line properties and vibration frequency. Stage 3 endeavors to match the individual line stiffness between the full depth and truncated models. In deepwater it is likely that taut polyester moorings will be used which are predominantly straight and have high axial stiffness that provides the principal restoring force to static and low frequency vessel motions. Consequently, it means that the natural frequencies of axial vibrations are above the typical wave frequency range allowing for a quasi-static solution. In cases of exceptionally large wave frequency vessel motions, localized curvature at the chain seabed segment and tangential skin drag on the polyester rope can increase dynamic peak tensions considerably. The focus of this paper is to develop an efficient scheme based on analytic formulation, for replicating these forces at the truncation. The paper will close with an example case study of a single mooring under extreme conditions that replicates exactly the static and dynamic characteristics of the full depth line. Copyright © 2012 by the International Society of Offshore and Polar Engineers (ISOPE).
Resumo:
Accurate modeling of gas microflow is crucial for the microfluidic devices in MEMS. Gas microflows through these devices are often in the slip and transition flow regimes, characterized by the Knudsen number of the order of 10-2∼100. An increasing number of researchers now dedicate great attention to the developments in the modeling of non-equilibrium boundary conditions in the gas microflows, concentrating on the slip model. In this review, we present various slip models obtained from different theoretical, computational and experimental studies for gas microflows. Correct descriptions of the Knudsen layer effect are of critical importance in modeling and designing of gas microflow systems and in predicting their performances. Theoretical descriptions of the gas-surface interaction and gas-surface molecular interaction models are introduced to describe the boundary conditions. Various methods and techniques for determination of the slip coefficients are reviewed. The review presents the considerable success in the implementation of various slip boundary conditions to extend the Navier-Stokes (N-S) equations into the slip and transition flow regimes. Comparisons of different values and formulations of the first- and second-order slip coefficients and models reveal the discrepancies arising from different definitions in the first-order slip coefficient and various approaches to determine the second-order slip coefficient. In addition, no consensus has been reached on the correct and generalized form of higher-order slip expression. The influences of specific effects, such as effective mean free path of the gas molecules and viscosity, surface roughness, gas composition and tangential momentum accommodation coefficient, on the hybrid slip models for gas microflows are analyzed and discussed. It shows that although the various hybrid slip models are proposed from different viewpoints, they can contribute to N-S equations for capturing the high Knudsen number effects in the slip and transition flow regimes. Future studies are also discussed for improving the understanding of gas microflows and enabling us to exactly predict and actively control gas slip. © Springer-Verlag 2012.
Resumo:
A heated rotating cavity with an axial throughflow of cooling air is used as a model for the flow in the cylindrical cavities between adjacent discs of a high-pressure gas-turbine compressor. In an engine the flow is expected to be turbulent, the limitations of this laminar study are fully realised but it is considered an essential step to understand the fundamental nature of the flow. The three-dimensional, time-dependent governing equations are solved using a code based on the finite volume technique and a multigrid algorithm. The computed flow structure shows that flow enters the cavity in one or more radial arms and then forms regions of cyclonic and anticyclonic circulation. This basic flow structure is consistent with existing experimental evidence obtained from flow visualization. The flow structure also undergoes cyclic changes with time. For example, a single radial arm, and pair of recirculation regions can commute to two radial arms and two pairs of recirculation regions and then revert back to one. The flow structure inside the cavity is found to be heavily influenced by the radial distribution of surface temperature imposed on the discs. As the radial location of the maximum disc temperature moves radially outward, this appears to increase the number of radial arms and pairs of recirculation regions (from one to three for the distributions considered here). If the peripheral shroud is also heated there appear to be many radial arms which exchange fluid with a strong cyclonic flow adjacent to the shroud. One surface temperature distribution is studied in detail and profiles of the relative tangential and radial velocities are presented. The disc heat transfer is also found to be influenced by the disc surface temperature distribution. It is also found that the computed Nusselt numbers are in reasonable accord over most of the disc surface with a correlation found from previous experimental measurements. © 1994, MCB UP Limited.