166 resultados para THERMOLUMINESCENCE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The TL, optical absorption (OA) and EPR properties of natural Brazilian alexandrite and chrysoberyl have been investigated. The TL measurements for natural alexandrite show five peaks between 100 and 450°C, with their emission spectrum having 370 and/or 570 nm components. The intensity of the 320°C TL peak was found to be enhanced with pre-annealing treatment, more prominently above 600°C. The OA and EPR measurements showed that this kind of heat treatment induces the Fe2→ Fe3+ conversion in the natural sample. Chrysoberyl samples exhibited the TL peaks at the same temperatures as alexandrite samples, but the glow curves were more than 200 times less intense than alexandrite ones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study aims the evaluation of the radiation dose levels involved in veterinary radiology and to contribute to review the procedures for performing radiographic exams in animals in the Department of Veterinary Radiology of Faculdade de Medicina Veterinária e Zootecnia of Universidade Estadual Paulista (FMVZ-UNESP/Brazil). The obtained results has shown to be extremely important the assessment of doses involved in veterinary diagnostic radiology procedures both to protect the occupationally exposed workers and to optimize the delivered doses to the animals. © 2009 Springer-Verlag.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Ciência dos Materiais - FEIS

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study aims to determine surface skin doses in dogs (with suspected pulmonary metastasis) submitted to chest X-rays using the technique of thermoluminescence dosimetry. Twenty seven exams from different dogs were performed at the Faculdade de Medicina Veterinária e Zootecnia da Universidade Estadual Paulista (FMVZ-UNESP/Botucatu). The doses were evaluated using thermoluminescent dosimeters of calcium sulphate doped with dysprosium (CaSO4:Dy) produced by the Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN). The pulmonary metastasis exams are carried out in three projections, one dorsal-ventral and two lateral-lateral. During the procedures the projection thicknesses and source-skin surface distances were registered. To simulate the dog phantom the dosimeters were positioned in a cubic simulator (30x30x30 cm) of polymethylmethacrylate (PMMA) filled with water and irradiated according to the parameters of projections with the X-ray energies ranging from 45 to 70 kV. To estimate the surface skin dose the dose-response curves were obtained for X-ray energies of 50 and 70 kV using the diagnostic X-ray beam machine of the Instruments Calibration Laboratory of IPEN for doses of 1.5, 2.0, 2.5, 3.5 and 4.0 mGy. The main difficulty of this work was the dog immobilization that is reflected in poor-quality diagnostic imaging and, consequently, demands the repetition of the exams, which contributes to the increase of the doses received by the animals being studied and the clinical staff. The doses evaluated in this type of procedure are between 0.43 and 4.22 mGy. This research has shown to be extremely important for the assessment of doses involved in veterinary diagnostic radiology procedures, and as a parameter in the individual monitoring of pet’s owners who assist the animal positioning and occupationally exposed workers of the Department of Veterinary Radiology

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, the persistent luminescence mechanisms of Tb3+ (in CdSiO3) and Eu2+ (in BaAl2O4) based on solid experimental data are compared. The photoluminescence spectroscopy shows the different nature of the inter- and intraconfigurational transitions for Eu2+ and Tb3+, respectively. The electron is the charge carrier in both mechanisms, implying the presence of electron acceptor defects. The preliminary structural analysis shows a free space in CdSiO3 able to accommodate interstitial oxide ions needed by charge compensation during the initial preparation. The subsequent annealing removes this oxide leaving behind an electron trap. Despite the low band gap energy for CdSiO3, determined with synchrotron radiation UV-VUV excitation spectroscopy of Tb3+, the persistent luminescence from Tb3+ is observed only with UV irradiation. The need of high excitation energy is due to the position of F-7(6) level deep below the bottom of the conduction band, as determined with the 4f(8)-> 4f(7)5d(1) and the ligand-to-metal charge-transfer transitions. Finally, the persistent luminescence mechanisms are constructed and, despite the differences, the mechanisms for Tb3+ and Eu2+ proved to be rather similar. This similarity confirms the solidity of the interpretation of experimental data for the Eu2+ doped persistent luminescence materials and encourages the use of similar models for other persistent luminescence materials. (C) 2012 Optical Society of America

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present status and future progress of the mechanisms of persistent luminescence are critically treated with the present knowledge. The advantages to be achieved by a further need as well as the pitfalls of the excessive use of imagination are shown. As usual, in the beginning of the present era of persistent luminescence since the mid 1990s, the imagination played a more important role than the sparse solid experimental data and the chemical common sense and knowledge was largely ignored. Since some five years, the mechanistic studies seem to have reached the maturity and - perhaps deceivingly - it seems that there are only details to be solved. However, the development of red emitting nanocrystalline materials poses a challenge also to the more fundamental studies and interpretation. The questions still luring in the darkness include the problems how the increased surface area affects the defect structure and how the "persistent energy transfer" really works. There is still some light to be thrown onto these matters starting with agreeing on the terminology: the term phosphorescence should be abandoned altogether. The long lifetime of persistent luminescence is due to trapping of excitation energy, not to the forbidden nature of the luminescent transition. However, the technically well-suited term "afterglow" should be retained for harmful, short persistent luminescence. (C) 2012 Optical Society of America

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sixty-three pottery fragments from four archaeological sites, numbered RST110, RST101, RST114 and RST114, in the Taquari Valley, vicinity of the city of Lajeado, Rio Grande do Sul state, southern Brazil, have been dated by the thermoluminescence method. Some of them from RST110 and RST101 are as old as 1400-1200 years, whereas those from RST114 and RST107 are younger than 800 years. This result indicates that RST101 and RST110 were peopled earlier than RST114 and RST107. The recent dates found are 302, 295 and 146 years and they are possible, since the first German immigrants who arrived in this region encountered Tupi-Guarani Indians still living there. One interesting result refers to the glow curves of quartz grains RST110, RST101 and RST114 that differ from the glow curves of RST107 quartz grains.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 1603, the Italian shoemaker Vincenzo Cascariolo found that a stone (baryte) from the outskirts of Bologna emitted light in the dark without any external excitation source. However, the calcination of the baryte was needed prior to this observation. The stone later named as the Bologna Stone was among the first luminescent materials and the first documented material to show persistent luminescence. The mechanism behind the persistent emission in this material has remained a mystery ever since. In this work, the Bologna Stone (BaS) was prepared from the natural baryte (Bologna, Italy) used by Cascariolo. Its properties, e. g. impurities (dopants) and their valences, luminescence, persistent luminescence and trap structure, were compared to those of the pure BaS materials doped with different (transition) metals (Cu, Ag, Pb) known to yield strong luminescence. The work was carried out by using different methods (XANES, TL, VUV-UV-vis luminescence, TGA-DTA, XPD). A plausible mechanism for the persistent luminescence from the Bologna Stone with Cu+ as the emitting species was constructed based on the results obtained. The puzzle of the Bologna Stone can thus be considered as resolved after some 400 years of studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Non-doped as well as titanium and lutetium doped zirconia (ZrO2) materials were synthesized via the sol-gel method and structurally characterized with X-ray powder diffraction. The addition of Ti in the zirconia lattice does not change the crystalline structure whilst the Lu doping introduces a small fraction of the tetragonal phase. The UV excitation results in a bright white-blue luminescence at ca. 500 nm for all the materials which emission could be assigned to the Ti3+ e(g) -> t(2g) transition. The persistent luminescence originates from the same Ti3+ center. The thermoluminescence data shows a well-defined though rather similar defect structures for all the zirconia materials. The kinetics of persistent luminescence was probed with the isothermal decay curve analyses which indicated significant retrapping. The short duration of persistent luminescence was attributed to the quasi-continuum distribution of the traps and to the possibility of shallow traps even below the room temperature. (C) 2012 Optical Society of America