960 resultados para TESA-blot
Resumo:
Ectomycorrhizal formation between the host tree, Pinus sylvestris and fungal symbiont, Suillus bovinus was investigated at the molecular level by isolating genes regulating the organization of the actin cytoskeleton in the fungal partner S. bovinus. An Agrobacterium tumefaciens mediated transformation (ATMT) system was developed for the ectomycorrhizal fungi in order to assign specific functions to the cloned molecules. The developed ATMT system was also used to transform a plant pathogenic fungus, Helminthosporium turcicum, to hygromycin B resistance. Small GTPases Cdc42 and Rac1, the regulators of actin cytoskeleton in eukaryotes were isolated from S. bovinus. Sbcdc42 and Sbrac1, are both expressed in vegetative and in the symbiotic hyphae of S. bovinus . Using IIF microscopy, Cdc42 and actin were co-localized at the tips of vegetative hyphae and were visualized in association with the plasma membrane in swollen cells typical to the symbiotic hyphae. These results suggest that the small GTPases Cdc42 may play a significant role in the polarized growth of S. bovinus hyphae and regulate fungal morphogenesis during ectomycorrhiza formation through reorganization of the actin cytoskeleton. The functional equality of Cdc42 was tested in yeast complementation experiments using a Saccharomyces cerevisiae temperature sensitive mutant, cdc42-1ts. The genomic clone of CDC42 was isolated from S. bovinus genomic DNA via specific primers for Cdc42. The analogous S. cerevisiae cdc42 mutations, dominant active G12V and dominant negative D118A, were generated in the Sbcdc42 gene by in-vitro mutagenesis. The ectomycorrhizal fungi, S. bovinus, P. involutus and H. cylindroporum were transformed using ATMT and phleomycin as a selectable marker. PCR screeing suggested that the T-DNA was inserted in all the three fungal genomes but the fate of integration could not be proved by Southern blot analysis. An alternative Agrobacterium strain, AGL-1 and selection marker, hygromycin was used to transform our model fungus S. bovinus. PCR and Southern analysis suggested an improved efficiency of transformation. All the transformed fungal colonies selected for hygromycin gave positives in PCR and the Southerns showed multiple or single copy T-DNA integrations into the S. bovinus genome. Using the same Agrobacterium strain and the selectable marker, a maize pathogen, H. turcicum was also subjected to ATMT. The H. turcicum transformation data suggested the single copy T-DNA integrations into the genome of the screened transformants that further confirms wider applicability of the ATMT. The plasmids carrying the wild-type (pHGCDC42) and the mutated Sbcdc42 alleles (pHGGV; pHGDA) under Agaricus bisporus gpd promoter were constructed in an A. tumefaciens vector. ATMT was used to transform S. bovinus with the plasmids carrying the wild-type and mutated Sbcdc42 alleles. The isolation of Sbcdc42 and Sbrac1 genes and some other functionally related genes from ectomycorrhizal fungus, S. bovinus will form the basis of future work to resolve the signalling pathway leading to ectomycorrhizal symbiosis. The development of ATMT system will be a valuable tool in analysing the exact function of signalling pathway components in ectomycorrhizal symbiosis or in plant pathogenic interactions. The transformation frequency and broad applicability along with the simplicity of T-DNA integration make Agrobacterium a valuable, new and a powerfull tool for targeted and insertional mutagenesis in these plant associated fungi. The developed ATMT systems should therefore make it possible to generate large number of transformants with tagged genes which could then be screened for their specific roles in symbiosis and pathogenecity, respectively.
Resumo:
Nitrate assimilation in many plants, algae, yeasts and bacteria is mediated by two enzymes, nitrate reductase (EC 1.6.6.2) and nitrite reductase (EC 1.7.7.1). They catalyse the stepwise reduction of nitrate to nitrite and nitrite to ammonia respectively. The nitrite reductase from an industrially important yeast, Candida utilis, has been purified to homogeneity. Purified nitrite reductase is a heterodimer and the molecular masses of the two subunits are 58 and 66 kDa. The native enzyme exhibits a molecular mass of 126 kDa as analysed by gel filtration. The identify of the two subunits of nitrite reductase was confirmed by immunoblotting using antibody for Cucurbita pepo leaf nitrite reductase. The presence of two different sized transcripts coding for the two subunits was confirmed by (a) in vitro translation of mRNA from nitrate-induced C. utilis followed by immunoprecipitation of the in vitro translated products with heterologous nitrite reductase antibody and (b) Northern-blot analysis. The 66 kDa subunit is acidic in nature which is probably due to its phosphorylated status. The enzyme is stable over a range of temperatures. Both subunits can catalyse nitrite reduction, and the reconstituted enzyme, at a higher protein concentration, shows an activity similar to that of the purified enzyme. Each of these subunits has been shown to contain a few unique peptides in addition to a large number of common peptides. Reduced Methyl Viologen has been found to be as effective an electron donor as NADPH in the catalytic process, a phenomenon not commonly seen for nitrite reductases from other systems.
Resumo:
Bioremediation, which is the exploitation of the intrinsic ability of environmental microbes to degrade and remove harmful compounds from nature, is considered to be an environmentally sustainable and cost-effective means for environmental clean-up. However, a comprehensive understanding of the biodegradation potential of microbial communities and their response to decontamination measures is required for the effective management of bioremediation processes. In this thesis, the potential to use hydrocarbon-degradative genes as indicators of aerobic hydrocarbon biodegradation was investigated. Small-scale functional gene macro- and microarrays targeting aliphatic, monoaromatic and low molecular weight polyaromatic hydrocarbon biodegradation were developed in order to simultaneously monitor the biodegradation of mixtures of hydrocarbons. The validity of the array analysis in monitoring hydrocarbon biodegradation was evaluated in microcosm studies and field-scale bioremediation processes by comparing the hybridization signal intensities to hydrocarbon mineralization, real-time polymerase chain reaction (PCR), dot blot hybridization and both chemical and microbiological monitoring data. The results obtained by real-time PCR, dot blot hybridization and gene array analysis were in good agreement with hydrocarbon biodegradation in laboratory-scale microcosms. Mineralization of several hydrocarbons could be monitored simultaneously using gene array analysis. In the field-scale bioremediation processes, the detection and enumeration of hydrocarbon-degradative genes provided important additional information for process optimization and design. In creosote-contaminated groundwater, gene array analysis demonstrated that the aerobic biodegradation potential that was present at the site, but restrained under the oxygen-limited conditions, could be successfully stimulated with aeration and nutrient infiltration. During ex situ bioremediation of diesel oil- and lubrication oil-contaminated soil, the functional gene array analysis revealed inefficient hydrocarbon biodegradation, caused by poor aeration during composting. The functional gene array specifically detected upper and lower biodegradation pathways required for complete mineralization of hydrocarbons. Bacteria representing 1 % of the microbial community could be detected without prior PCR amplification. Molecular biological monitoring methods based on functional genes provide powerful tools for the development of more efficient remediation processes. The parallel detection of several functional genes using functional gene array analysis is an especially promising tool for monitoring the biodegradation of mixtures of hydrocarbons.
Resumo:
Human pancreatic juice contains two major trypsinogen isoenzymes called trypsinogen-1 and -2, or cationic and anionic trypsinogen, respectively. Trypsinogen isoenzymes are also expressed in various normal and malignant tissues. We aimed at developing monoclonal antibodies (MAbs) and time-resolved immunofluorometric methods recognizing human trypsinogen-1 and -2, respectively. Using these MAbs and methods we purified, characterized and quantitated trypsinogen isoenzymes in serum samples, ovarian cyst fluids and conditioned cell culture media. In sera from healthy subjects and patients with extrapancreatic disease the concentration of trypsinogen-1 is higher than that of trypsinogen-2. However, in acute pancreatitis we found that the concentration of serum trypsinogen-2 is 50-fold higher than in controls, whereas the difference in trypsinogen-1 concentration is only 15-fold. This suggested that trypsinogen-2 could be used as a diagnostic marker for acute pancreatitis. In human ovarian cyst fluids tumor-associated trypsinogen-2 (TAT-2) is the predominant isoenzyme. Most notably, in mucinous cyst fluids the levels of TAT-2 were higher in borderline and malignant than in benign cases. The increased levels in association with malignancy suggested that TAT could be involved in ovarian tumor dissemination and breakage of tissue barriers. Serum samples from patients who had undergone pancreatoduodenectomy contained trypsinogen-2. Trypsinogen-1 was detected in only one of nine samples. These results suggested that the expression of trypsinogen is not restricted to the pancreas. Determination of the isoenzyme pattern by ion exchange chromatography revealed isoelectric variants of trypsinogen isoenzymes in serum samples. Intact trypsinogen isoenzymes and tryptic and chymotryptic trypsinogen peptides were purified and characterized by mass spectrometry, Western blot analysis and N-terminal sequencing. The results showed that pancreatic trypsinogen-1 and -2 are sulfated at tyrosine 154 (Tyr154), whereas TAT-2 from a colon carcinoma cell line is not. Tyr154 is located within the primary substrate binding pocket of trypsin, thus Tyr154 sulfation is likely to influence substrate binding. The previously known differences in charge, substrate specificity and inhibitor binding between pancreatic and tumor-associated trypsinogens are suggested to be caused by sulfation of Tyr154 in pancreatic trypsinogens.
Resumo:
Background: Fatty acids are indispensable constituents of mycolic acids that impart toughness & permeability barrier to the cell envelope of M. tuberculosis. Biotin is an essential co-factor for acetyl-CoA carboxylase (ACC) the enzyme involved in the synthesis of malonyl-CoA, a committed precursor, needed for fatty acid synthesis. Biotin carboxyl carrier protein (BCCP) provides the co-factor for catalytic activity of ACC. Methodology/Principal Findings: BPL/BirA (Biotin Protein Ligase), and its substrate, biotin carboxyl carrier protein (BCCP) of Mycobacterium tuberculosis (Mt) were cloned and expressed in E. coli BL21. In contrast to EcBirA and PhBPL, the similar to 29.5 kDa MtBPL exists as a monomer in native, biotin and bio-5'AMP liganded forms. This was confirmed by molecular weigt profiling by gel filtration on Superdex S-200 and Dynamic Light Scattering (DLS). Computational docking of biotin and bio-5'AMP to MtBPL show that adenylation alters the contact residues for biotin. MtBPL forms 11 H-bonds with biotin, relative to 35 with bio-5'AMP. Docking simulations also suggest that bio-5'AMP hydrogen bonds to the conserved `GRGRRG' sequence but not biotin. The enzyme catalyzed transfer of biotin to BCCP was confirmed by incorporation of radioactive biotin and by Avidin blot. The K-m for BCCP was similar to 5.2 mu M and similar to 420 nM for biotin. MtBPL has low affinity (K-b = 1.06 x 10(-6) M) for biotin relative to EcBirA but their K-m are almost comparable suggesting that while the major function of MtBPL is biotinylation of BCCP, tight binding of biotin/bio-5'AMP by EcBirA is channeled for its repressor activity. Conclusions/Significance: These studies thus open up avenues for understanding the unique features of MtBPL and the role it plays in biotin utilization in M. tuberculosis.
Resumo:
The genus Salmonella includes many pathogens of great medical and veterinary importance. Bacteria belonging to this genus are very closely related to those belonging to the genus Escherichia. lacZYA operon and lacI are present in Escherichia coli, but not in Salmonella enterica. It has been proposed that Salmonella has lost lacZYA operon and lacI during evolution. In this study, we have investigated the physiological and evolutionary significance of the absence of lacI in Salmonella enterica. Using murine model of typhoid fever, we show that the expression of Lacl causes a remarkable reduction in the virulence of Salmonella enterica. Lacl also suppresses the ability of Salmonella enterica to proliferate inside murine macrophages. Microarray analysis revealed that Lacl interferes with the expression of virulence genes of Salmonella pathogenicity island 2. This effect was confirmed by RT-PCR and Western blot analysis. Interestingly, we found that SBG0326 of Salmonella bongori is homologous to lacI of Escherichia coli. Salmonella bongori is the only other species of the genus Salmonella and it lacks the virulence genes of Salmonella pathogenicity island 2. Overall, our results demonstrate that Lacl is an antivirulence factor of Salmonella enterica and suggest that absence of lacI has facilitated the acquisition of virulence genes of Salmonella pathogenicity island 2 in Salmonella enterica making it a successful systemic pathogen.
Resumo:
The nucleotide sequence of a 714 bp BamHI-EcoRI fragment of cucumber chloroplast DNA was determined. The fragment contained a gene for tRNA(Leu) together with its flanking regions. The trnL(CAA) gene sequence is about 99% in similarity to broad bean, cauliflower, maize, spinach and tobacco corresponding genes. The relative expression level of the gene was determined by Northern (tRNA) gel blot and Northern (total cellular RNA) slot-blot analyses using the trnL gene probe in 6-day old etiolated cucumber seedlings and the seedlings that had been kept in the dark (dark-grown), treated with benzyladenine (BA) and kept in the dark (BA-treated dark-grown), illuminated (light-grown), and treated with BA and illuminated (BA-treated light-grown), for additional 4, 8 or 12 hr. The trnL transcripts and tRNA(Leu) levels in BA-treated dark-grown seedlings were 5 and 3 times higher, respectively after 4 hr BA treatment, while in the BA treated light-grown seedlings the level of trnL transcripts was only 3 times higher and had no detectable effect on mature tRNA(Leu) when compared to the time-4 hr dark-grown seedlings. However, the level of mature tRNA(Leu) did not show marked changes in the light-grown seedlings, whereas the level of trnL transcripts increases 3 times after 8 hr illumination of dark-grown seedlings. These data indicate that both light and cytokinin can signal changes in plastid tRNA gene expression. The possible regulatory mechanisms for such changes are discussed.
Resumo:
The nucleotide sequence of a 714 bp BamHI-EcoRI fragment of cucumber chloroplast DNA was determined. The fragment contained a gene for tRNA(Leu) together with its flanking regions. The trnL(CAA) gene sequence is about 99% in similarity to broad bean, cauliflower, maize, spinach and tobacco corresponding genes. The relative expression level of the gene was determined by Northern (tRNA) gel blot and Northern (total cellular RNA) slot-blot analyses using the trnL gene probe in 6-day old etiolated cucumber seedlings and the seedlings that had been kept in the dark (dark-grown), treated with benzyladenine (BA) and kept in the dark (BA-treated dark-grown), illuminated (light-grown), and treated with BA and illuminated (BA- treated light-grown), for additional 4, 8 or 12 hr. The trnL transcripts and tRNA(Leu) levels in BA-treated dark-grown seedlings were 5 and 3 times higher, respectively after 4 hr BA treatment, while in the BA treated light-grown seedlings the level of trnL transcripts was only 3 times higher and had not detectable effect on mature tRNA(Leu) when compared to the time-4 hr dark-grown seedlings. However, the level of mature tRNA(Leu) did not show marked changes in the light-grown seedlings, whereas the level of trnL transcripts increases 3 times after 8 hr illumination of dark-grown seedlings. These date indicate that both light and cytokinin can signal changes in plastid tRNA gene expression. The possible regulatory mechanisms for such changes are discussed.
Resumo:
Background Epidemiological studies suggest a potential role for obesity and determinants of adult stature in prostate cancer risk and mortality, but the relationships described in the literature are complex. To address uncertainty over the causal nature of previous observational findings, we investigated associations of height- and adiposity-related genetic variants with prostate cancer risk and mortality. Methods We conducted a case–control study based on 20,848 prostate cancers and 20,214 controls of European ancestry from 22 studies in the PRACTICAL consortium. We constructed genetic risk scores that summed each man’s number of height and BMI increasing alleles across multiple single nucleotide polymorphisms robustly associated with each phenotype from published genome-wide association studies. Results The genetic risk scores explained 6.31 and 1.46 % of the variability in height and BMI, respectively. There was only weak evidence that genetic variants previously associated with increased BMI were associated with a lower prostate cancer risk (odds ratio per standard deviation increase in BMI genetic score 0.98; 95 % CI 0.96, 1.00; p = 0.07). Genetic variants associated with increased height were not associated with prostate cancer incidence (OR 0.99; 95 % CI 0.97, 1.01; p = 0.23), but were associated with an increase (OR 1.13; 95 % CI 1.08, 1.20) in prostate cancer mortality among low-grade disease (p heterogeneity, low vs. high grade <0.001). Genetic variants associated with increased BMI were associated with an increase (OR 1.08; 95 % CI 1.03, 1.14) in all-cause mortality among men with low-grade disease (p heterogeneity = 0.03). Conclusions We found little evidence of a substantial effect of genetically elevated height or BMI on prostate cancer risk, suggesting that previously reported observational associations may reflect common environmental determinants of height or BMI and prostate cancer risk. Genetically elevated height and BMI were associated with increased mortality (prostate cancer-specific and all-cause, respectively) in men with low-grade disease, a potentially informative but novel finding that requires replication.
Resumo:
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide. Well-known risk factors include tobacco smoking and alcohol consumption. Overall survival has improved, but is still low especially in developing countries. One reason for this is the often advanced stage of the disease at the time of diagnosis, but also lack of reliable prognostic tools to enable individualized patient treatment to improve outcome. To date, the TNM classification still serves as the best disease evaluation criterion, although it does not take into account the molecular basis of the tumor. The need for surrogate molecular markers for more accurate disease prediction has increased research interests in this field. We investigated the prevalence, physical status, and viral load of human papillomavirus (HPV) in HNSCC to determine the impact of HPV on head and neck carcinogenesis. The prevalence and genotyping of HPV were assessed with an SPF10 PCR microtiter plate-based hybridization assay (DEIA), followed by a line probe-based genotyping assay. More than half of the patients had HPV DNA in their tumor specimens. Oncogenic HPV-16 was the most common type, and coinfections with other oncogenic and benign associated types also existed. HPV-16 viral load was unevenly distributed among different tumor sites; the tonsils harbored significantly greater amounts of virus than other sites. Episomal location of HPV-16 was associated with large tumors, and both integrated and mixed forms of viral DNA were detected. In this series, we could not show that the presence of HPV DNA correlated with survival. In addition, we investigated the prevalence and genotype of HPV in laryngeal carcinoma patients in a prospective Nordic multicenter study based on fresh-frozen laryngeal tumor samples to determine whether the tumors were HPV-associated. These patients were also examined and interviewed at diagnosis for known risk factors, such as tobacco smoking and alcohol consumption, and for several other habituations to elucidate their effects on patient survival. HPV analysis was performed with the same protocols as in the first study. Only 4% of the specimens harbored HPV DNA. Heavy drinking was associated with poor survival. Heavy drinking patients were also younger than nonheavy drinkers and had a more advanced stage of disease at diagnosis. Heavy drinkers had worse oral hygiene than nonheavy drinkers; however, poor oral hygiene did not have prognostic significance. History of chronic laryngitis, gastroesophageal reflux disease, and orogenital sex contacts were rare in this series. To clarify why vocal cord carcinomas seldom metastasize, we determined tumor lymph vessel (LVD) and blood vessel (BVD) densities in HNSCC patients. We used a novel lymphatic vessel endothelial marker (LYVE-1 antibody) to locate the lymphatic vessels in HNSCC samples and CD31 to detect the blood microvessels. We found carcinomas of the vocal cords to harbor less lymphatic and blood microvessels than carcinomas arising from sites other than vocal cords. The lymphatic and blood microvessel densities did not correlate with tumor size. High BVD was strongly correlated with high LVD. Neither BVD nor LVD showed any association with survival in our series. The immune system plays an important role in tumorigenesis, as neoplastic cells have to escape the cytotoxic lymphocytes in order to survive. Several candidate HLA class II alleles have been reported to be prognostic in cervical carcinomas, an epithelial malignancy resembling HNSCC. These alleles may have an impact on head and neck carcinomas as well. We determined HLA-DRB1* and -DQB1* alleles in HNSCC patients. Healthy organ donors served as controls. The Inno-LiPA reverse dot-blot kit was used to identify alleles in patient samples. No single haplotype was found to be predictive of either the risk for head and neck cancer, or the clinical course of the disease. However, alleles observed to be prognostic in cervical carcinomas showed a similar tendency in our series. DRB1*03 was associated with node-negative disease at diagnosis. DRB1*08 and DRB1*13 were associated with early-stage disease; DRB1*04 had a lower risk for tumor relapse; and DQB1*03 and DQB1*0502 were more frequent in controls than in patients. However, these associations reached only borderline significance in our HNSCC patients.
Resumo:
In this paper, the effect of some commonly used antithyroid drugs and their analogues on peroxynitrite-mediated nitration of proteins is described. The nitration of tyrosine residues in bovine serum albumin (BSA) and cytochromec was studied by Western blot analysis. These studies reveal that the antithyroid drugs methimazole (MMI), 6-n-propyl-2-thiouracil (PTU), and 6-methyl-2-thiouracil (MTU), which contain thione moieties, significantly reduce the tyrosine nitration of both BSA and cytochrome c. While MMI exhibits good peroxynitrite (PN) scavenging activity, the thiouracil compounds PTU and MTU are slightly less effective than MMI. The S- and Se-methylated compounds show a weak inhibitory effect in the nitration of tyrosine, indicating that the presence of a thione or selone moiety is important for an efficient inhibition. Similarly, the replacement of N-H moiety in MMI by N-methyl or N-m-methoxybenzyl substituents dramatically reduces the antioxidant activity of the parent compound. Theoretical studies indicate that the substitution of N-H moiety by N-Me significantly increases the energy required for the oxidation of sulfur center by PN. However, such substitution in the selenium analogue of MMI increases the activity of parent compound. This is due to the facile oxidation of the selone moiety to the corresponding selenenic and seleninic acids. Unlike N,N'-disubstituted thiones, the corresponding selones efficiently scavenge PN, as they predominantly exist in their zwitterionic forms in which the selenium atom carries a large negative charge.
Resumo:
Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease with unknown aetiology and poor prognosis. IPF is characterized by alveolar epithelial damage that leads tissue remodelling and ultimately to the loss of normal lung architecture and function. Treatment has been focused on anti-inflammatory therapies, but due to their poor efficacy new therapeutic modalities are being sought. There is a need for early diagnosis and also for differential diagnostic markers for IPF and other interstitial lung diseases. The study utilized patient material obtained from bronchoalveolar lavage (BAL), diagnostic biopsies or lung transplantation. Human pulmonary fibroblast cell cultures were propagated and asbestos-induced pulmonary fibrosis in mice was used as an experimental animal model of IPF. The possible markers for IPF were scanned by immunohistochemistry, RT-PCR, ELISA and western blot. Matrix metalloproteinases (MMPs) are proteolytic enzymes that participate in tissue remodelling. Microarray studies have introduced potential markers that could serve as additional tools for the assessment of IPF and one of the most promising was MMP 7. MMP-7 protein levels were measured in the BAL fluid of patients with idiopathic interstitial lung diseases or idiopathic cough. MMP-7 was however similarly elevated in the BAL fluid of all these disorders and thus cannot be used as a differential diagnostic marker for IPF. Activation of transforming growth factor (TGF)-ß is considered to be a key element in the progression of IPF. Bone morphogenetic proteins (BMP) are negative regulators of intracellular TGF-ß signalling and BMP-4 signalling is in turn negatively regulated by gremlin. Gremlin was found to be highly upregulated in the IPF lungs and IPF fibroblasts. Gremlin was detected in the thickened IPF parenchyma and endothelium of small capillaries, whereas in non-specific interstitial pneumonia it localized predominantly in the alveolar epithelium. Parenchymal gremlin immunoreactivity might indicate IPF-type interstitial pneumonia. Gremlin mRNA levels were higher in patients with end-stage fibrosis suggesting that gremlin might be a marker for more advanced disease. Characterization of the fibroblastic foci in the IPF lungs showed that immunoreactivity to platelet-derived growth factor (PDGF) receptor-α and PDGF receptor-β was elevated in IPF parenchyma, but the fibroblastic foci showed only minor immunoreactivity to the PDGF receptors or the antioxidant peroxiredoxin II. Ki67 positive cells were also observed predominantly outside the fibroblastic foci, suggesting that the fibroblastic foci may not be composed of actively proliferating cells. When inhibition of profibrotic PDGF-signalling by imatinib mesylate was assessed, imatinib mesylate reduced asbestos-induced pulmonary fibrosis in mice as well as human pulmonary fibroblast migration in vitro but it had no effect on the lung inflammation.
Resumo:
The differentiation of cytotrophoblasts into syncytiotrophoblasts in the placenta has been employed as a model to investigate stage specific expression as well as regulation of genes during this process. While the cytotrophoblasts are highly invasive and proliferative with relatively less capacity to synthesize pregnancy related proteins, the multinucleated syncytiotrophoblasts are non-proliferative and non-invasive. However, syncytiotrophoblasts are the site of synthesis of a variety of protein, peptide and steroid hormones as well as several growth factors. Both the freshly isolated cytotrophoblasts from human placenta as well as the BeWo cell, a choriocarcinoma cell line model which retain several characteristic of cytotrophoblasts has been employed by us to study regulation of differentiation. In the present study, we have employed the differential display RT-PCR analysis (DD-RT-PCR) to evaluate gene expression changes during Forskolin induced in vitro differentiation of BeWo cells. We have identified several genes which are differentially expressed during differentiation and the differential expression of 10 transcripts was confirmed by Northern blot analysis. Based on the identity of the transcripts an attempt has been made to relate the known function of the gene products, to changes observed during differentiation. Of the several transcripts, one of the transcripts, namely Secretory Leukocyte Protease Inhibitor (SLPI) which is known to have multiple functions was found to increase 15-fold in the syntiotrophoblast.
Resumo:
Prolyl oligopeptidase (POP, prolyl endopeptidase, EC 3.4.21.26) is a serine-type peptidase (family S9 of clan SC) hydrolyzing peptides shorter than 30 amino acids. POP has been found in various mammalian and bacterial sources and it is widely distributed throughout different organisms. In human and rat, POP enzyme activity has been detected in most tissues, with the highest activity found mostly in the brain. POP has gained scientific interest as being involved in the hydrolyzis of many bioactive peptides connected with learning and memory functions, and also with neurodegenerative disorders. In drug or lesion induced amnesia models and in aged rodents, POP inhibitors have been able to revert memory loss. POP may have a fuction in IP3 signaling and it may be a possible target of mood stabilizing substances. POP may also have a role in protein trafficking, sorting and secretion. The role of POP during ontogeny has not yet been resolved. POP enzyme activity and expression have shown fluctuation during development. Specially high enzyme activities have been measured in the brain during early development. Reduced neuronal proliferation and differentation in presence of POP inhibitor have been reported. Nuclear POP has been observed in proliferating peripheral tissues and in cell cultures at the early stage of development. Also, POP coding mRNA is abundantly expressed during brain ontogeny and the highest levels of expression are associated with proliferative germinal matrices. This observation indicates a special role for POP in the regulation of neurogenesis during development. For the experimental part, the study was undertaken to investigate the expression and distribution of POP protein and enzymatic activity of POP in developing rat brain (from embryonic day 14 to post natal day 7) using immunohistochemistry, POP enzyme activity measurements and western blot-analysis. The aim was also to find in vivo confirmation of the nuclear colocalization of POP during early brain ontogeny. For immunohistochemistry, cryosections from the brains of the fetuses/rats were made and stained using specific antibody for POP and fluorescent markers for POP and nuclei. The enzyme activity assay was based on the fluorescence of 7- amino-4-methylcoumarin (AMC) generated from the fluorogenic substrate succinyl-glycyl-prolyl-7-amino-4-methylcoumarin (Suc-Gly-Pro-AMC) by POP. The amounts of POP protein and the specifity of POP antibody in rat embryos was confirmed by western blot analysis. We observed that enzymatic activity of POP is highest at embryonic day 18 while the protein amounts reach their peak at birth. POP was widely present throughout the developmental stages from embryonic day 14 to parturition day, although the POP-immunoreactivity varied abundantly. At embryonic days 14 and 18 notably amounts of POP was distributed at proliferative germinal zones. Furthermore, POP was located in the nucleus early in the development but is transferred to cytosol before birth. At P0 and P7 the POP-immunoreactivity was also widely observed, but the amount of POP was notably reduced at P7. POP was present in cytosol and in intercellular space, but no nuclear POP was observed. These findings support the idea of POP being involved in specific brain functions, such as neuronal proliferation and differentation. Our results in vivo confirm the previous cell culture results supporting the role of POP in neurogenesis. Moreover, an inconsistency of POP protein amounts and enzymatic activity late in the development suggests a strong regulation of POP activity and a possible non-hydrolytic role at that stage.
Resumo:
Lihavuus on kasvava ongelma länsimaissa. Siihen liittyy useita metabolisia muutoksia, jotka johtavat erilaisiin kohde-elinvaurioihin. Vaurioiden mekanismien tunnistaminen on tärkeää, jotta niiden ehkäisyyn voidaan kehittää uusia elintapa- ja lääkehoitoja. Tämän tutkimuksen tarkoituksena oli selvittää ravinnon rasvamäärän, resveratrolin ja kalorirajoituksen vaikutuksia hiirten sydämissä ja maksoissa sekä määrittää näiden vaikutus SIRT1 – proteiinin määrään kyseisissä kudoksissa. Tutkimuksessa vertailtiin Western Blot – menetelmän avulla SIRT1:n pitoisuutta hiirten sydämissä ja maksoissa. SIRT1:n lokalisaatio osoitettiin immunohistokemiallisen värjäyksen avulla. Sydänlihassolujen hypertrofiaa arvioitiin mikroskoopin avulla HE – värjätyistä leikkeistä. Resveratrolin vaikutus sydänlihassolujen hypertrofian asteeseen jäi vähäiseksi. Kalorirajoitus lisäsi SIRT1:n määrää sekä sydämessä että maksassa ja esti sydänlihassolujen hypertrofian. Tutkimus tarjoaa hyvän pohjan selvittää laajemmin resveratrolin vaikutusta SIRT1:n aktivaatioon ja sitä kohde-elinvaurioiden estoon.