507 resultados para TEOREMA DE PITAGORAS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Le th eor eme de Riemann-Roch originale a rme que pour tout morphisme propre f : Y ! X entre vari et es quasi-projectifs lisses sur un corps, et tout el ement a 2 K0(Y ) du groupe de Grothendieck des br es vectoriels on a ch(f!(a)) = f {u100000}Td(Tf ) ch(a) (cf. [BS58]). Ici ch est le caract ere de Chern, Td(Tf ) est la classe de Todd du br e tangent relative et f et f! sont les images directes de l'anneau de Chow et K0 respectivement. Apr es, Baum, Fulton et MacPherson ont d emontr e en [BFM75] le th eor eme de Riemann-Roch pour des morphismes localement intersection compl ete entre des sch emas alg ebriques (sch emas s epar es et localement de type ni sur un corps) projectifs et singuli eres. En [FG83] Fulton et Gillet ont d emontr e le th eor eme sans hypoth eses projectifs. L'extension a la th eorie K sup erieure pour des sch emas r eguli eres sur une base fut d emontr e par Gillet en [Gil81]. Le th eor eme de Riemann-Roch qu'il prouve est pour des morphismes projectifs entre des sch emas lisses et quasi-projectifs. Donc, dans le cas des sch emas sur un corps, le r esultat de Gillet n'inclus pas le th eor eme de [BFM75]. La plus grande g en eralisation du th eor eme de Riemann-Roch que je connais est [D eg14] et [HS15], o u D eglise et Holmstrom-Scholbach obtiennent ind ependamment le th eor eme de Riemann- Roch pour la K-th eorie sup erieure et les morphismes projectifs lic entre sch emas r eguli eres sur une base noetherienne de dimension nie... NOTA 520 8 El teorema de Riemann-Roch original de Grothendieck a rma que para todo mor smo propio f : Y ! X, entre variedades irreducibles quasiproyectivas lisas sobre un cuerpo, y todo elemento a 2 K0(Y ) del grupo de Grothendieck de brados vectoriales se satisface la relaci on ch(f!(a)) = f {u100000}Td(Tf ) ch(a) (cf. [BS58]). Recu erdese que ch denota el car acter de Chern, Td(Tf ) la clase de Todd del brado tangente relativo y f y f! las im agenes directas en el anillo de Chow y K0 respectivamente. M as tarde Baum, Fulton MacPherson probaron en [BFM75] el teorema de Riemann-Roch para mor smos localmente intersecci on completa entre esquemas algebraicos (es decir, esquemas separados localmente de tipo nito sobre cuerpo) proyectivos singulares. En [FG83] Fulton y Gillet probaron el teorema sin hip otesis proyectivas. La notable extensi on a la teor a K superior para esquemas regulares sobre una base fue probada por Gillet en [Gil81]. El teorema de Riemann-Roch all probado es para mor smos proyectivos entre esquemas lisos quasiproyectivos. Sin embargo, obs ervese que en el caso de esquemas sobre cuerpo el resultado de Gillet no recupera el teorema de [BFM75]. La mayor generalizaci on del teorema de Riemann-Roch que yo conozco es [D eg14] y [HS15] donde D eglise y Holmstrom-Scholbach obtuvieron independientemente el teorema de Riemann-Roch para teor a K superior y mor smos proyectivos lic entre esquemas regulares sobre una base noetheriana nito dimensional...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In questa tesi si presenta il concetto di politopo convesso e se ne forniscono alcuni esempi, poi si introducono alcuni metodi di base e risultati significativi della teoria dei politopi. In particolare si dimostra l'equivalenza tra le due definizioni di H-politopo e di V-politopo, sfruttando il metodo di eliminazione di Fourier-Motzkin per coni. Tutto ciò ha permesso di descrivere, grazie al lemma di Farkas, alcune importanti costruzioni come il cono di recessione e l'omogeneizzazione di un insieme convesso.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El ?nfasis que se hace en el Teorema Fundamental de la Aritm?tica en la educaci?n b?sica no es muy amplio pese a la importancia y los conocimientos que puede movilizar su ense?anza en el aprendizaje de los estudiantes, es por ello que el presente trabajo de grado se caracteriza por la identificaci?n de las concepciones de los profesores de matem?ticas sobre el Teorema Fundamental de la Aritm?tica, desde una perspectiva Hist?rico-Epistemol?gica, a partir de la cual se indaga sobre los obst?culos epistemol?gicos que se presentaron en la construcci?n del tema central. Se considera que es necesario analizar las concepciones de los profesores, debido a que ?stas caracterizan no solo el conocimiento del profesor sino que tambi?n permean la forma en que se desarrollan los conocimientos en el aula de clase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Investigación orientada al Análisis Complejo, presentando la similitud entre la serie de Laurent y la serie de Taylor (excepto cuando la función no es holomorfa) estableciendo la relación que existe entre el residuo y la serie de Laurent. El Teorema del Residuo, es aplicado solamente cuando el número de puntos singulares es finito. Asimismo, se aplicó el cálculo de residuos para evaluar integrales de funciones cuyas trayectorias encierran varias singularidades independientes de cualquier tipo de singularidad (polo, removibles o esenciales). En conclusión, se encontró que es imposible aplicar el teorema de Cauchy para caminos cerrados que encierran puntos singulares, por consiguiente, el teorema del residuo da solución a ese tipo de problemas. Finalmente se aplicó el Teorema del Residuo para sumar series que relacionan el número de polos con el número de enteros en el interior de un camino cerrado.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El teorema del punto fijo es aplicable a un tipo especial de sucesiones; dicho teorema es utilizado en muchas ciencias aplicadas (economía, ingeniería, informática) así como en las ciencias fundamentales (física, química, biología, etc.). El trabajo investiga la teoría del punto fijo y algunas aplicaciones del Teorema del Punto Fijo de Banach, para elaborar un documento en el que se presenten algunas aplicaciones y la teoría del punto fijo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Se desarrolla un estudio de todas las herramientas necesarias para llegar al teorema de los ceros de Hilbert el cual luego se demuestra en sus formas débil y fuerte. Se introducen los conceptos básicos relacionados con los anillos noetherianos y las variedades algebraicas afines que son fundamentales para el estudio del teorema de los ceros de Hilbert. Es por ello que estudiamos detenidamente el concepto de ideal primo e ideal primario, como también las distintas operaciones entre ideales, en particular la descomposición primaria de ideales. En seguida se desarrollan las demostraciones de algunos de los teoremas importantes de los anillos noetherianos, haciendo uso de la descomposición primaria de un ideal y un resultado fundamental: el teorema de la base de Hilbert. Además se desarrollan las definiciones, proposiciones, teoremas de una variedad algebraica afín y el ideal asociado a una variedad, así como también el ideal de una variedad y lo más interesante es la descomposición de ideales en variedades algebraicas afines, como la condición de cadena descendente de variedades. También se hace la aplicación de los resultados obtenidos en los capítulos anteriores, para demostrar el teorema de los ceros de Hilbert en su forma dedil así como en la forma fuerte. Finalmente adoptamos una Topología que es muy débil pero sorprendentemente útil ocupando los resultados anteriores, probando propiedades que cumple esta topología como la cerradura topológica y compacidad.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Con el objeto no de introducir al estudiante universitario a la noción de función inversa sino de reorganizar ideas, darle significado a unas y resignificar otras (es decir, ayudarlo a aprehender el concepto) se elaboró un razonamiento, basado en ideas previas del alumno, que concluye en el Teorema del tubo fluorescente. Este Teorema permite, a partir del gráfico de una función biyectiva, obtener el de su inversa de un modo más sencillo y seguro que el de los textos tradicionales y, simultáneamente, aporta un claro mensaje conceptual. El cambio en la percepción del tema (en el 75 a 80% de los estudiantes) y la seducción de la inversa “instantánea” son superados por la idea (desde ahora evidente) que una función y su inversa son expresiones de una misma relación observada desde distintos puntos de vista.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El objetivo de este proyecto es construir un banco de prácticas destinado al y análisis del impacto de un chorro contra diferentes obstáculos y estudiar dicho efecto mediante el teorema de cantidad de movimiento. Para ello se ha diseñado un prototipo basado en el banco instalado en la Escuela Técnica Superior de Ingenieros de Bilbao. Las diferentes piezas necesarias para la construcción del prototipo se realizaran mediante diferentes medios, algunas de ellas se encargaran a órganos externos a la escuela y otras se fabricaran con equipo disponible en el propio centro. Para el diseño se han tenido en cuenta parámetros y cálculos como los de la instalación hidráulica.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fil: Conte, Rodrigo. Universidad Nacional de La Plata. Facultad de Humanidades y Ciencias de la Educación; Argentina.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

121 p.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El proyecto tiene como objetivo el estudio de las propiedades más importantes de las matrices doblemente estocásticas y algunas aplicaciones. Se comienza analizando algunas propiedades espectrales de las matrices no negativas de las que aquellas son un caso particular y se demuestra, en particular, el Teorema de Perron-Frobenius. Posteriormente se discute en detalle la relación entre las matrices doblemente estocásticas y la mayorización de vectores reales y el importante teorema de Birkhoff. El proyecto finaliza desarrollando algunas aplicaciones de este tipo de matrices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En esta tesis estudiamos las teorías sobre la Matriz Densidad Reducida (MDR) como un marco prometedor. Nos enfocamos sobre esta teorías desde dos aspectos: Primero, usamos algunos modelos sencillos hechos con dos partículas las cuales estan armónicamente confinadas como una base para ilustrar la utilidad de la matriz densidad. Para tales sistemas, usamos la MDR de un cuerpo para calcular algunas cantidades de interés tales como densidad de momentum. Posteriormente obtenemos los orbitales naturales y su número de ocupación para algunos de los modelos, y en uno de los casos expresamos la MDR de dos cuerpos de manera exacta en términos de la MDR de un cuerpo. También usamos el teorema diferencial del virial para establecer una descripción unificada de la familia entera de estos sistemas modelo en términos de la densidad. En la seguna parte cambiamos a casos fuera del equilibrio y analizamos la así llamada jerarquía BBGKY de ecuaciones para describir la evolución temporal de un sistema de muchos cuerpos en términos de sus MDRs (a todos los órdenes). Proveemos un exhaustivo estudio de los desafíos y problemas abiertos ligados a la truncación de tales jerarquías de ecuaciones para hacerlas aplicables. Restringimos nuestro análisis a la evolución acoplada de la MDR de uno y dos cuerpos, donde los efectos de correlación de alto orden estan embebidos dentro de la aproximación usada para cerrar las ecuaciones. Probamos que dentro de esta aproximación, el número de electrones y la energía total se conservan, sin importar la aproximación usada. Luego, demostramos que aplicando los esquemas de truncación de estado base para llevar los electrones a comportamientos indeseables y no físicos, tales como la violación e incluso la divergencia en la densidad electrónica local, tanto en regímenes correlacionados débiles y fuertes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hasteko, lehenengo Kapituluan Talde Teoriako oinarrizko kontzeptuak gogoratuko dira. Baita, garrantzi handia duen finituki sortuak diren talde abeldarren egitura teorema estudiatuko da. Memoria honen Bigarren Kapituluan, Sylow-en Teoremen ezagutza aztertuko da eta Sylow-en Teoremen ondorio interesgarri bat guztiz garatuta aurkeztuko da, aplikazio gisa. Orain, Hirugarren Kapituluan guretzat guztiz berria den gai bat aztertuko da: talde nilpotenteak, hain zuzen ere. Azkenik, lanaren Laugarren Kapitulua hiru zatitan banatuko da: alde batetik, talde ebazgarrien oinarriak, Pi-taldeak eta bukatzeko, talde ebazgarri finituen Hall-en Pi-azpitaldeak.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Atualmente, existem modelos matemáticos capazes de preverem acuradamente as relações entre propriedades de estado; e esta tarefa é extremamente importante no contexto da Engenharia Química, uma vez que estes modelos podem ser empregados para avaliar a performance de processos químicos. Ademais, eles são de fundamental importância para a simulação de reservatórios de petróleo e processos de separação. Estes modelos são conhecidos como equações de estado, e podem ser usados em problemas de equilíbrios de fases, principalmente em equilíbrios líquido-vapor. Recentemente, um teorema matemático foi formulado (Teorema de Redução), fornecendo as condições para a redução de dimensionalidade de problemas de equilíbrios de fases para misturas multicomponentes descritas por equações de estado cúbicas e regras de mistura e combinação clássicas. Este teorema mostra como para uma classe bem definidade de modelos termodinâmicos (equações de estado cúbicas e regras de mistura clássicas), pode-se reduzir a dimensão de vários problemas de equilíbrios de fases. Este método é muito vantajoso para misturas com muitos componentes, promovendo uma redução significativa no tempo de computação e produzindo resultados acurados. Neste trabalho, apresentamos alguns experimentos numéricos com misturas-testes usando a técnica de redução para obter pressões de ponto de orvalho sob especificação de temperaturas.