996 resultados para Synthetic metallaborane chemistry
Resumo:
Large quantities of pure synthetic oligodeoxynucleotides (ODNs) are important for preclinical research, drug development, and biological studies. These ODNs are synthesized on an automated synthesizer. It is inevitable that the crude ODN product contains failure sequences which are not easily removed because they have the same properties as the full length ODNs. Current ODN purification methods such as polyacrylamide gel electrophoresis (PAGE), reversed-phase high performance liquid chromatography (RP HPLC), anion exchange HPLC, and affinity purification can remove those impurities. However, they are not suitable for large scale purification due to the expensive aspects associated with instrumentation, solvent demand, and high labor costs. To solve these problems, two non-chromatographic ODN purification methods have been developed. In the first method, the full-length ODN was tagged with the phosphoramidite containing a methacrylamide group and a cleavable linker while the failure sequences were not. The full-length ODN was incorporated into a polymer through radical acrylamide polymerization whereas failure sequences and other impurities were removed by washing. Pure full-length ODN was obtained by cleaving it from the polymer. In the second method, the failure sequences were capped by a methacrylated phosphoramidite in each synthetic cycle. During purification, the failure sequences were separated from the full-length ODN by radical acrylamide polymerization. The full-length ODN was obtained via water extraction. For both methods, excellent purification yields were achieved and the purity of ODNs was very satisfactory. Thus, this new technology is expected to be beneficial for large scale ODN purification.
Resumo:
A new synthetic approach to (dl)-8-aza-13,14-dihydroprostanoic acid and its corresponding 11-hydroxy derivative is described
Resumo:
BACKGROUND Curcumin (CUR) is a dietary spice and food colorant (E100). Its potent anti-inflammatory activity by inhibiting the activation of Nuclear Factor-kappaB is well established. METHODS The aim of this study was to compare natural purified CUR (nCUR) with synthetically manufactured CUR (sCUR) with respect to their capacity to inhibit detrimental effects in an in vitro model of oral mucositis. The hypothesis was to demonstrate bioequivalence of nCUR and sCUR. RESULTS The purity of sCUR was HPLC-confirmed. Adherence and invasion assays for bacteria to human pharyngeal epithelial cells demonstrated equivalence of nCUR and sCUR. Standard assays also demonstrated an identical inhibitory effect on pro-inflammatory cytokine/chemokine secretion (e.g., interleukin-8, interleukin-6) by Detroit pharyngeal cells exposed to bacterial stimuli. There was bioequivalence of sCUR and nCUR with respect to their antibacterial effects against various pharyngeal species. CONCLUSION nCUR and sCUR are equipotent in in vitro assays mimicking aspects of oral mucositis. The advantages of sCUR include that it is odorless and tasteless, more easily soluble in DMSO, and that it is a single, highly purified molecule, lacking the batch-to-batch variation of CUR content in nCUR. sCUR is a promising agent for the development of an oral anti-mucositis agent.
Resumo:
Several polyamine derivatives were synthesized in order to produce novel antagonists of muscular nicotinic acetylcholine receptors. Their affinities were compared with those of philanthotoxin PhTX-343.
Resumo:
Oligonucleotides comprising unnatural building blocks, which interfere with the translation machinery, have gained increased attention for the treatment of gene-related diseases (e.g. antisense, RNAi). Due to structural modifications, synthetic oligonucleotides exhibit increased biostability and bioavailability upon administration. Consequently, classical enzyme-based sequencing methods are not applicable to their sequence elucidation and verification. Tandem mass spectrometry is the method of choice for performing such tasks, since gas-phase dissociation is not restricted to natural nucleic acids. However, tandem mass spectrometric analysis can generate product ion spectra of tremendous complexity, as the number of possible fragments grows rapidly with increasing sequence length. The fact that structural modifications affect the dissociation pathways greatly increases the variety of analytically valuable fragment ions. The gas-phase dissociation of oligonucleotides is characterized by the cleavage of one of the four bonds along the phosphodiester chain, by the accompanying loss of nucleases, and by the generation of internal fragments due to secondary backbone cleavage. For example, an 18-mer oligonucleotide yields a total number of 272’920 theoretical fragment ions. In contrast to the processing of peptide product ion spectra, which nowadays is highly automated, there is a lack of tools assisting the interpretation of oligonucleotide data. The existing web-based and stand-alone software applications are primarily designed for the sequence analysis of natural nucleic acids, but do not account for chemical modifications and adducts. Consequently, we developed a software to support the interpretation of mass spectrometric data of natural and modified nucleic acids and their adducts with chemotherapeutic agents.
Resumo:
We report here three examples of the reactivity of protic nucleophiles with diimine-type ligands in the presence of FeII salts. In the first case, the iron-promoted alcoholysis reaction of one nitrile group of the ligand 2,3-dicyano-5,6-bis(2-pyridyl)-pyrazine (L1) permitted the isolation of an stable E-imido−ester, [Fe(L1‘)2](CF3SO3)2 (1), which has been characterized by spectroscopic studies (IR, ES-MS, Mössbauer), elemental analysis, and crystallographically. Compound 1 consists of mononuclear octahedrally coordinated FeII complexes where the FeII ion is in its low-spin state. The iron-mediated nucleophilic attack of water to the asymmetric ligand 2,3-bis(2-pyridyl)pyrido[3,4-b]pyrazine (L2) has also been studied. In this context, the crystal structures of two hydration−oxidation FeIII products, [Fe(L2‘)2](ClO4)3·3CH3CN (2) and trans-[FeL2‘‘Cl2] (3), are described. Compounds 2 and 3 are both mononuclear FeIII complexes where the metals occupy octahedral positions. In principle, L2 is expected to coordinate to metal ions through its bipyridine-type units to form a five-membered ring; however, this is not the case in compounds 2 and 3. In 2, the ligand coordinates through its pyridines and through the hydroxyl group attached to the pyrazine imino carbon after hydration, that is, in an N,O,N tridentate manner. In compound 3, the ligand has suffered further transformations leading to a very stable diamido complex. In this case, the metal ion achieves its octahedral geometry by means of two pyridines, two amido N atoms, and two axial chlorine atoms. Magnetic susceptibility measurements confirmed the spin state of these two FeIII species: compounds 2 and 3 are low-spin and high-spin, respectively.
Resumo:
We synthesized the phosphinate 7 via photoaddition of methanol to the alpha, beta unsaturated deoxyribono lactone as the key step, followed by an Arbusov reaction for the introduction of phosphorous. Precursor 7 serves for the synthesis and incorporation into DNA of a novel chemically stable abasic site analogue that might act as an inhibitor for DNA glycosylases
Resumo:
Tuftsin is an immunopotentiating tetrapeptide of the sequence L-Thr-L-Lys-L-Pro-L-Arg with anti-microbial and anti-tumor enhancing capabilities. These enhancing functions are manifested through the host's granulocytes and monocytes. In delineating tuftsin's mechanism of action, both radiolabeled and fluorescent probes were synthesized. The radiolabeled probe of tuftsin, L-proly-3,4-('3)H(N) -tuftsin, was obtained through the synthesis and subsequent catalytic hydrogenation of L-3,4-dehydroprolyl ('3)-tuftsin using tritium gas. This procedure yielded a probe with a specific activity of 44.9 Ci/mmole. This radiolabeled probe of tuftsin was used in competitive inhibition studies with tuftsin, the tuftsin analogues Lys-Pro-Arg, Thr-Lys-Pro-Arg(NO(,2)) and (DELTA)('3)-pro('3) -tuftsin as well as with the chemotactic peptide f-Met-Leu-Phe. From the competitive binding curves, the K(,D) for tuftsin was estimated to be 80 nM, a value that approaches the concentration of tuftsin that evokes a half maximal biological response. The approximate Ki's for the tuftsin analogues (33 nM) approached that of tuftsin itself (40 nM). On the other hand, approximately a two log difference in the Ki was seen with the chemotactic tripeptide, indicating that tuftsin may indeed be acting through the chemotactic peptide receptor. This conclusion is further strengthened by studies using an N-terminal derivitized mono-fluoresceinated tuftsin probe and image intensification microscopy. These studies showed that like the chemotactic peptide, tuftsin initially binds to diffusely distributed receptors on the surface of human granulocytes. The tuftsin-receptor complexes then rapidly redistribute to form patches (5 min @ 37(DEGREES)C) which are then internalized. Whether redistribution and internalization of tuftsin-receptor complexes is crucial in effecting a biological response, or simply an intermediary point leading ultimately to degradation, is still not clear. This process, however, may provide the target cell with an early time point in modulating the biological effects of tuftsin through down-regulation of cell surface receptor sites. ^
Resumo:
The chronostratigraphy of Guandao section has served as the foundation for numerous studies of the end-Permian extinction and biotic recovery in south China. Guandao section is continuous from the Permian-Triassic boundary to the Upper Triassic.Conodonts enable broad delineation of stage and substage boundaries and calibration of foraminifer biostratigraphy as follows. Changhsingian- Griesbachian: first Hindeodus parvus, and first appearance of foraminifers Postcladella kalhori and Earlandia sp. Griesbachian-Dienerian: first Neospathodus dieneri, and last appearance of foraminifer P. grandis. Dienerian-Smithian: first Novispathodus waageni and late Dienerian first appearance of foraminifer Hoyenella ex gr. sinensis. Smithian-Spathian: first Nv? crassatus and last appearance of foraminifers Arenovidalina n. sp. and Glomospirella cf. vulgaris. Spathian-Aegean: first Chiosella timorensis and first appearance of foraminifer Meandrospira dinarica. Aegean-Bithynian: first Nicoraella germanica and first appearance of foraminifer Pilammina densa. Bithynian-Pelsonian: after last Neogondolella regalis, prior to first Paragondolella bulgarica and first appearance of foraminifer Aulotortus eotriasicus. Pelsonian-Illyrian: first Pg. excelsa and last appearance of foraminifers Meandrospira ? deformata and Pilamminella grandis. Illyrian-Fassanian: first Budurovignathus truempyi, and first appearance of foraminifers Abriolina mediterranea and Paleolituonella meridionalis. Fassanian-Longobardian: first Bv. mungoensis and last appearance of foraminifer A. mediterranea. Longobardian-Cordevolian: first Quadralella polygnathiformis and last appearance of foraminifers Turriglomina mesotriasica and Endotriadella wirzi. The section contains primary magnetic signature with frequent reversals occurring around the Permian-Triassic, Olenekian-Anisian, and Anisian-Ladinian boundaries. Predominantly normal polarity occurs in the lower Smithian, Bithynian, and Longobardian-Cordevolian. Predominantly reversed polarity occurs in the upper Griesbachian, Induan-Olenekian, Pelsonian and lower Illyrian. Reversals match well with the GPTS. Large amplitude carbon isotope excursions, attaining values as low as -2.9 per mil d13C and high as +5.7 per mil d13C, characterize the Lower Triassic and basal Anisian. Values stabilize around +2 per mil d13C through the Anisian to Carnian. Similar signatures have been reported globally. Magnetic susceptibility and synthetic gamma ray logs show large fluctuations in the Lower Triassic and an overall decline in magnitude of fluctuation through the Middle and Upper Triassic. The largest spikes in magnetic susceptibility and gamma ray, indicating greater terrestrial lithogenic flux, correspond to positive d13C excursions. Several volcanic ash horizons occur in the Lower Triassic and Olenekian-Anisian boundary. High resolution U-Pb analysis of zircons provide a robust age of 247.2 Ma for the Olenekian-Anisian boundary.