843 resultados para Surgical Procedures, Operative--history
Resumo:
Este estudo teve por objetivo validar o Protocolo de avaliação do frênulo da língua em bebês. Para isso, a partir do cálculo amostral, foi aplicado o protocolo em 100 bebês saudáveis, nascidos a termo, com 30 dias de vida, em amamentação exclusiva. O processo de validação consistiu da análise da validade de conteúdo, de critério e de construto, bem como da confiabilidade, sensibilidade, especificidade, valor preditivo positivo e negativo. A validade de conteúdo foi realizada por três examinadores, por meio da classificação de cada item quanto à clareza e posterior aplicação do Índice de Validação do Conteúdo. As avaliadoras sugeriram modificações no protocolo, por consenso, possibilitando obter a versão final. Para a validade de critério, comparou-se o Protocolo de avaliação do frênulo da língua em bebês com o instrumento Bristol Tongue Assessment Tool (BTAT). A validade de construto foi analisada a partir da comparação dos escores do protocolo aplicado nos bebês com 30 e 75 dias. As avaliações foram realizadas por duas fonoaudiólogas especialistas em Motricidade Orofacial (denominadas A1 e A2), devidamente treinadas e calibradas, por meio da análise das filmagens realizadas durante a aplicação do protocolo, para verificação da concordância entre examinadores, bem como definição dos valores de sensibilidade, especificidade e valores preditivos. Para a análise da concordância intra-avaliador foi realizado o teste/reteste de 20% da amostra pela A2. Quanto ao tratamento estatístico, para a análise de concordância intra e entre avaliadores, foram utilizados o Coeficiente de Correlação Intraclasse e o cálculo do erro do método. Para análise da validade de construto foram aplicados os testes de Wilcoxon e Mann-Whitney. O nível de significância adotado em todos os testes foi de 5%. Houve 100% de concordância na validação do conteúdo. A validade de critério apresentou correlações fortes dos itens correspondentes do Protocolo de avaliação do frênulo da língua em bebês e do instrumento BTAT, sendo o valor do coeficiente de correlação de Spearman igual a -0,997. Os resultados obtidos evidenciaram uma concordância muito boa intra e entre avaliadores, com valores baixos de erro casual e valores de p>0,05 (evidenciando que não há diferença entre a análise dos avaliadores) e Coeficiente de Correlação Intraclasse maior que 0,75; mostrando ainda, uma capacidade significativa do protocolo em mensurar as mudanças resultantes da frenotomia lingual, pela história clínica, avaliação anatomofuncional e avaliação da sucção não nutritiva e nutritiva (p<0,05). Quando comparados os resultados dos bebês com alteração do frênulo lingual (grupo experimental) e sem alteração (grupo controle), com 30 e 75 dias, houve diferença nos escores parciais e no escore total do exame clínico e do protocolo completo. Os índices de sensibilidade, especificidade e valores preditivos positivo e negativo foram 100%. A ocorrência das alterações do frênulo lingual nesse estudo foi de 21%. Concluiu-se, com este estudo, que o Protocolo de avaliação do frênulo da língua em bebês mostrou ser um instrumento válido e confiável de avaliação, assegurando acurácia em diagnosticar as alterações do frênulo lingual dentro dos parâmetros investigados, podendo ser aplicado por diferentes avaliadores, desde que os mesmos sejam capacitados e treinados para sua aplicação.
Resumo:
An essay upon the surgical anatomy and history of the common, external, and internal carotid arteries.--An essay upon the surgical anatomy and history of the innominate and subclavian arteries.--An essay upon the surgical anatomy of the tibio-tarsal region.--An essay upon the surgical anatomy of the obturator artery, and notes upon the surgical anatomy of the surgical anatomy of the hip-joint.
Resumo:
Recent research suggests that the retrospective review of the International Classification of Disease (ICD-9-CM) codes assigned to a patient episode will identify a similar number of healthcare-acquired surgical-site infections as compared with prospective surveillance by infection control practitioners (ICP). We tested this finding by replicating the methods for 380 surgical procedures. The sensitivity and specificity of the ICP undertaking prospective surveillance was 80% and 100%, and the sensitivity and specificity of the review of ICD-10-AM codes was 60% and 98.9%. Based on these results we do not support retrospective review of ICD-10-AM codes in preference prospective surveillance for SSI. (C) 2004 The Hospital Infection Society. Published by Elsevier Ltd. All rights reserved.
Resumo:
This article describes a surgical robotic device that is able to discriminate tissue interfaces and other controlling parameters ahead of the drill tip. The advantage in such a surgery is that the tissues at the interfaces can be preserved. A smart tool detects ahead of the tool point and is able to control the interaction with respect to the flexing tissue, to avoid penetration or to control the extent of protrusion with respect to the position of the tissue. For surgical procedures, where precision is required, the tool offers significant benefit. To interpret the drilling conditions and the conditions leading up to breakthrough at a tissue interface, a sensing scheme is used that discriminates between the variety of conditions posed in the drilling environment. The result is a fully autonomous system, which is able to respond to the tissue type, behaviour, and deflection in real-time. The system is also robust in terms of disturbances encountered in the operating theatre. The device is pragmatic. It is intuitive to use, efficient to set up, and uses standard drill bits. The micro-drill, which has been used to prepare cochleostomies in the theatre, was used to remove the bone tissue leaving the endosteal membrane intact. This has enabled the preservation of sterility and the drilling debris to be removed prior to the insertion of the electrode. It is expected that this technique will promote the preservation of hearing and reduce the possibility of complications. The article describes the device (including simulated drill progress and hardware set-up) and the stages leading up to its use in the theatre. © 2010 Authors.
Resumo:
Stand-alone and networked surgical virtual reality based simulators have been proposed as means to train surgical skills with or without a supervisor nearby the student or trainee -- However, surgical skills teaching in medicine schools and hospitals is changing, requiring the development of new tools to focus on: (i) importance of mentors role, (ii) teamwork skills and (iii) remote training support -- For these reasons, a surgical simulator should not only allow the training involving a student and an instructor that are located remotely, but also the collaborative training of users adopting different medical roles during the training sesión -- Collaborative Networked Virtual Surgical Simulators (CNVSS) allow collaborative training of surgical procedures where remotely located users with different surgical roles can take part in the training session -- To provide successful training involving good collaborative performance, CNVSS should handle heterogeneity factors such as users’ machine capabilities and network conditions, among others -- Several systems for collaborative training of surgical procedures have been developed as research projects -- To the best of our knowledge none has focused on handling heterogeneity in CNVSS -- Handling heterogeneity in this type of collaborative sessions is important because not all remotely located users have homogeneous internet connections, nor the same interaction devices and displays, nor the same computational resources, among other factors -- Additionally, if heterogeneity is not handled properly, it will have an adverse impact on the performance of each user during the collaborative sesión -- In this document, the development of a context-aware architecture for collaborative networked virtual surgical simulators, in order to handle the heterogeneity involved in the collaboration session, is proposed -- To achieve this, the following main contributions are accomplished in this thesis: (i) Which and how infrastructure heterogeneity factors affect the collaboration of two users performing a virtual surgical procedure were determined and analyzed through a set of experiments involving users collaborating, (ii) a context-aware software architecture for a CNVSS was proposed and implemented -- The architecture handles heterogeneity factors affecting collaboration, applying various adaptation mechanisms and finally, (iii) A mechanism for handling heterogeneity factors involved in a CNVSS is described, implemented and validated in a set of testing scenarios
Resumo:
Congenital heart disease (CHD) is the most common birth defect, causing an important rate of morbidity and mortality. Treatment of CHD requires surgical correction in a significant percentage of cases which exposes patients to cardiac and end organ injury. Cardiac surgical procedures often require the utilisation of cardiopulmonary bypass (CPB), a system that replaces heart and lungs function by diverting circulation into an external circuit. The use of CPB can initiate potent inflammatory responses, in addition a proportion of procedures require a period of aortic cross clamp during which the heart is rendered ischaemic and is exposed to injury. High O2 concentrations are used during cardiac procedures and when circulation is re-established to the heart which had adjusted metabolically to ischaemia, further injury is caused in a process known as ischaemic reperfusion injury (IRI). Several strategies are in place in order to protect the heart during surgery, however injury is still caused, having detrimental effects in patients at short and long term. Remote ischaemic preconditioning (RIPC) is a technique proposed as a potential cardioprotective measure. It consists of exposing a remote tissue bed to brief episodes of ischaemia prior to surgery in order to activate protective pathways that would act during CPB, ischaemia and reperfusion. This study aimed to assess RIPC in paediatric patients requiring CHD surgical correction with a translational approach, integrating clinical outcome, marker analysis, cardiac function parameters and molecular mechanisms within the cardiac tissue. A prospective, single blinded, randomized, controlled trial was conducted applying a RIPC protocol to randomised patients through episodes of limb ischaemia on the day before surgery which was repeated right before the surgery started, after anaesthesia induction. Blood samples were obtained before surgery and at three post-operative time points from venous lines, additional pre and post-bypass blood samples were obtained from the right atrium. Myocardial tissue was resected during the ischaemic period of surgery. Echocardiographic images were obtained before the surgery started after anaesthetic induction and the day after surgery, images were stored for later off line analysis. PICU surveillance data was collected including ventilation parameters, inotrope use, standard laboratory analysis and six hourly blood gas analysis. Pre and post-operative quantitation of markers in blood specimens included cardiac troponin I (cTnI) and B-type natriuretic peptide (BNP), inflammatory mediators including interleukins IL-6, IL-8, IL-10, tumour necrosis factor (TNF-α), and the adhesion molecules ICAM-1 and VCAM-1; the renal marker Cystatin C and the cardiovascular markers asymmetric dymethylarginine (ADMA) and symmetric dymethylarginine (SDMA). Nitric oxide (NO) metabolites and cyclic guanosine monophosphate (cGMP) were measured before and after bypass. Myocardial tissue was processed at baseline and after incubation at hyperoxic concentration during four hours in order to mimic surgical conditions. Expression of genes involved in IRI and RIPC pathways was analysed including heat shock proteins (HSPs), toll like receptors (TLRs), transcription factors nuclear factor κ-B (NF- κ-B) and hypoxia inducible factor 1 (HIF-1). The participation of hydrogen sulfide enzymatic genes, apelin and its receptor were explored. There was no significant difference according to group allocation in any of the echocardiographic parameters. There was a tendency for higher cTnI values and inotropic score in control patients post-operatively, however this was not statistically significant. BNP presented no significant difference according to group allocation. Inflammatory parameters tended to be higher in the control group, however only TNF- α was significantly higher. There was no difference in levels of Cystatin C, NO metabolites, cGMP, ADMA or SDMA. RIPC patients required shorter PICU stay, all other clinical and laboratory analysis presented no difference related to the intervention. Gene expression analysis revealed interesting patterns before and after incubation. HSP-60 presented a lower expression at baseline in tissue corresponding to RIPC patients, no other differences were found. This study provided with valuable descriptive information on previously known and newly explored parameters in the study population. Demographic characteristics and the presence of cyanosis before surgery influenced patterns of activity in several parameters, numerous indicators were linked to the degree of injury suffered by the myocardium. RIPC did not reduce markers of cardiac injury or improved echocardiographic parameters and it did not have an effect on end organ function; some effects were seen in inflammatory responses and gene expression analysis. Nevertheless, an important clinical outcome indicator, PICU length of stay was reduced suggesting benefit from the intervention. Larger studies with more statistical power could determine if the tendency of lower injury and inflammatory markers linked to RIPC is real. The present results mostly support findings of larger multicentre trials which have reported no cardiac benefit from RIPC in paediatric cardiac surgery.
Resumo:
Voir aussi : F. Plumereau, S. Mucci, P. Le Naoures, J.B. Finel, A. Hamy. Ischémie mésentérique aiguë d’étiologie artérielle : intérêt d’une revascularisation précoce. Journal de Chirurgie Viscérale, Volume 152, Issue 1, February 2015, pp. 16-21. doi:10.1016/j.jchirv.2014.07.014
Resumo:
Tese (doutorado)—Universidade de Brasília, Faculdade de Medicina, Programa de Pós-Graduação em Ciências Médicas, 2016.
Resumo:
The primary aims of scoliosis surgery are to halt the progression of the deformity, and to reduce its severity (cosmesis). Currently, deformity correction is measured in terms of posterior parameters (Cobb angles and rib hump), even though the cosmetic concern for most patients is anterior chest wall deformity. In this study, we propose a new measure for assessing anterior chest wall deformity and examine the correlation between rib hump and the new measure. 22 sets of CT scans were retrieved from the QUT/Mater Paediatric Spinal Research Database. The Image J software (NIH) was used to manipulate formatted CT scans into 3-dimensional anterior chest wall reconstructions. A ‘chest wall angle’ was then measured in relation to the first sacral vertebral body. The chest wall angle was found to be a reliable tool in the analysis of chest wall deformity. No correlation was found between the new measure and rib hump angle. Since rib hump has been shown to correlate with vertebral rotation on CT, this suggests that there maybe no correlation between anterior and posterior deformity measures. While most surgical procedures will adequately address the coronal imbalance & posterior rib hump elements of scoliosis, they do not reliably alter the anterior chest wall shape. This implies that anterior chest wall deformity is to a large degree an intrinsic deformity, not directly related to vertebral rotation.
Resumo:
PURPOSE. This study was conducted to determine the magnitude of pupil center shift between the illumination conditions provided by corneal topography measurement (photopic illuminance) and by Hartmann-Shack aberrometry (mesopic illuminance) and to investigate the importance of this shift when calculating corneal aberrations and for the success of wavefront-guided surgical procedures. METHODS. Sixty-two subjects with emmetropia underwent corneal topography and Hartmann-Shack aberrometry. Corneal limbus and pupil edges were detected, and the differences between their respective centers were determined for both procedures. Corneal aberrations were calculated using the pupil centers for corneal topography and for Hartmann-Shack aberrometry. Bland-Altmann plots and paired t-tests were used to analyze the differences between corneal aberrations referenced to the two pupil centers. RESULTS. The mean magnitude (modulus) of the displacement of the pupil with the change of the illumination conditions was 0.21 ± 0.11 mm. The effect of this pupillary shift was manifest for coma corneal aberrations for 5-mm pupils, but the two sets of aberrations calculated with the two pupil positions were not significantly different. Sixty-eight percent of the population had differences in coma smaller than 0.05 µm, and only 4% had differences larger than 0.1 µm. Pupil displacement was not large enough to significantly affect other higher-order Zernike modes. CONCLUSIONS. Estimated corneal aberrations changed slightly between photopic and mesopic illumination conditions given by corneal topography and Hartmann-Shack aberrometry. However, this systematic pupil shift, according to the published tolerances ranges, is enough to deteriorate the optical quality below the theoretically predicted diffraction limit of wavefront-guided corneal surgery.
Resumo:
Low back pain is an increasing problem in industrialised countries and although it is a major socio-economic problem in terms of medical costs and lost productivity, relatively little is known about the processes underlying the development of the condition. This is in part due to the complex interactions between bone, muscle, nerves and other soft tissues of the spine, and the fact that direct observation and/or measurement of the human spine is not possible using non-invasive techniques. Biomechanical models have been used extensively to estimate the forces and moments experienced by the spine. These models provide a means of estimating the internal parameters which can not be measured directly. However, application of most of the models currently available is restricted to tasks resembling those for which the model was designed due to the simplified representation of the anatomy. The aim of this research was to develop a biomechanical model to investigate the changes in forces and moments which are induced by muscle injury. In order to accurately simulate muscle injuries a detailed quasi-static three dimensional model representing the anatomy of the lumbar spine was developed. This model includes the nine major force generating muscles of the region (erector spinae, comprising the longissimus thoracis and iliocostalis lumborum; multifidus; quadratus lumborum; latissimus dorsi; transverse abdominis; internal oblique and external oblique), as well as the thoracolumbar fascia through which the transverse abdominis and parts of the internal oblique and latissimus dorsi muscles attach to the spine. The muscles included in the model have been represented using 170 muscle fascicles each having their own force generating characteristics and lines of action. Particular attention has been paid to ensuring the muscle lines of action are anatomically realistic, particularly for muscles which have broad attachments (e.g. internal and external obliques), muscles which attach to the spine via the thoracolumbar fascia (e.g. transverse abdominis), and muscles whose paths are altered by bony constraints such as the rib cage (e.g. iliocostalis lumborum pars thoracis and parts of the longissimus thoracis pars thoracis). In this endeavour, a separate sub-model which accounts for the shape of the torso by modelling it as a series of ellipses has been developed to model the lines of action of the oblique muscles. Likewise, a separate sub-model of the thoracolumbar fascia has also been developed which accounts for the middle and posterior layers of the fascia, and ensures that the line of action of the posterior layer is related to the size and shape of the erector spinae muscle. Published muscle activation data are used to enable the model to predict the maximum forces and moments that may be generated by the muscles. These predictions are validated against published experimental studies reporting maximum isometric moments for a variety of exertions. The model performs well for fiexion, extension and lateral bend exertions, but underpredicts the axial twist moments that may be developed. This discrepancy is most likely the result of differences between the experimental methodology and the modelled task. The application of the model is illustrated using examples of muscle injuries created by surgical procedures. The three examples used represent a posterior surgical approach to the spine, an anterior approach to the spine and uni-lateral total hip replacement surgery. Although the three examples simulate different muscle injuries, all demonstrate the production of significant asymmetrical moments and/or reduced joint compression following surgical intervention. This result has implications for patient rehabilitation and the potential for further injury to the spine. The development and application of the model has highlighted a number of areas where current knowledge is deficient. These include muscle activation levels for tasks in postures other than upright standing, changes in spinal kinematics following surgical procedures such as spinal fusion or fixation, and a general lack of understanding of how the body adjusts to muscle injuries with respect to muscle activation patterns and levels, rate of recovery from temporary injuries and compensatory actions by other muscles. Thus the comprehensive and innovative anatomical model which has been developed not only provides a tool to predict the forces and moments experienced by the intervertebral joints of the spine, but also highlights areas where further clinical research is required.
Resumo:
Aims: To describe a local data linkage project to match hospital data with the Australian Institute of Health and Welfare (AIHW) National Death Index (NDI) to assess longterm outcomes of intensive care unit patients. Methods: Data were obtained from hospital intensive care and cardiac surgery databases on all patients aged 18 years and over admitted to either of two intensive care units at a tertiary-referral hospital between 1 January 1994 and 31 December 2005. Date of death was obtained from the AIHW NDI by probabilistic software matching, in addition to manual checking through hospital databases and other sources. Survival was calculated from time of ICU admission, with a censoring date of 14 February 2007. Data for patients with multiple hospital admissions requiring intensive care were analysed only from the first admission. Summary and descriptive statistics were used for preliminary data analysis. Kaplan-Meier survival analysis was used to analyse factors determining long-term survival. Results: During the study period, 21 415 unique patients had 22 552 hospital admissions that included an ICU admission; 19 058 surgical procedures were performed with a total of 20 092 ICU admissions. There were 4936 deaths. Median follow-up was 6.2 years, totalling 134 203 patient years. The casemix was predominantly cardiac surgery (80%), followed by cardiac medical (6%), and other medical (4%). The unadjusted survival at 1, 5 and 10 years was 97%, 84% and 70%, respectively. The 1-year survival ranged from 97% for cardiac surgery to 36% for cardiac arrest. An APACHE II score was available for 16 877 patients. In those discharged alive from hospital, the 1, 5 and 10-year survival varied with discharge location. Conclusions: ICU-based linkage projects are feasible to determine long-term outcomes of ICU patients
Resumo:
Currently, well-established clinical therapeutic approaches for bone reconstruction are restricted to the transplantation of autografts and allografts, and the implantation of metal devices or ceramic-based implants to assist bone regeneration. Bone grafts possess osteoconductive and osteoinductive properties, however they are limited in access and availability and associated with donor site morbidity, haemorrhage, risk of infection, insufficient transplant integration, graft devitalisation, and subsequent resorption resulting in decreased mechanical stability. As a result, recent research focuses on the development of alternative therapeutic concepts. Analysing the tissue engineering literature it can be concluded that bone regeneration has become a focus area in the field. Hence, a considerable number of research groups and commercial entities work on the development of tissue engineered constructs for bone regeneration. However, bench to bedside translations are still infrequent as the process towards approval by regulatory bodies is protracted and costly, requiring both comprehensive in vitro and in vivo studies. In translational orthopaedic research, the utilisation of large preclinical animal models is a conditio sine qua non. Consequently, to allow comparison between different studies and their outcomes, it is essential that animal models, fixation devices, surgical procedures and methods of taking measurements are well standardized to produce reliable data pools as a base for further research directions. The following chapter reviews animal models of the weight-bearing lower extremity utilized in the field which include representations of fracture-healing, segmental bone defects, and fracture non-unions.
Resumo:
The ultimate goal of periodontal therapy is to regenerate periodontal supporting tissues, but this is hard to achieve as the results of periodontal techniques for regeneration are clinically unpredictable. Stem cells owing to their plasticity and proliferation potential provides a new paradigm for periodontal regeneration. Stem cells from mesenchyme can self renew and generate new dental tissues (including dentin and cementum), alveolar bone and periodontal ligament, and thus they have great potential in periodontal regeneration. This chapter presents an insight into mesenchymal stem cells and their potential use in periodontal regeneration. In this chapter the cellular and molecular biology in periodontal regeneration will be introduced, followed by a range of conventional surgical procedures for periodontal regeneration will be discussed. Mesenchymal stem cells applied in regenerated periodontal tissue and their biological characterizations in vitro will be also introduced. Lastly, the use of mesenchymal stem cell to repair periodontal tissues in large animal models will be also reviewed.
Resumo:
Background: Fusionless scoliosis surgery is an early-stage treatment for idiopathic scoliosis which claims potential advantages over current fusion-based surgical procedures. Anterior vertebral stapling using a shape memory alloy staple is one such approach. Despite increasing interest in this technique, little is known about the effects on the spine following insertion, or the mechanism of action of the staple. The purpose of this study was to investigate the biomechanical consequences of staple insertion in the anterior thoracic spine, using in vitro experiments on an immature bovine model. Methods: Individual calf spine thoracic motion segments were tested in flexion, extension, lateral bending and axial rotation. Changes in motion segment rotational stiffness following staple insertion were measured on a series of 14 specimens. Strain gauges were attached to three of the staples in the series to measure forces transmitted through the staple during loading. A micro-CT scan of a single specimen was performed after loading to qualitatively examine damage to the vertebral bone caused by the staple. Findings: Small but statistically significant decreases in bending stiffness occurred in flexion,extension, lateral bending away from the staple, and axial rotation away from the staple. Each strain-gauged staple showed a baseline compressive loading following insertion which was seen to gradually decrease during testing. Post-test micro-CT showed substantial bone and growth plate damage near the staple. Interpretation: Based on our findings it is possible that growth modulation following staple insertion is due to tissue damage rather than sustained mechanical compression of the motion segment.