987 resultados para Surface energies
Resumo:
This paper summarises the development of a machine-readable model series for explaining Gaudi's use of ruled surface geometry in the Sagrada Familia in Barcelona, Spain. The first part discusses the modeling methods underlying the columns of the cathedral and the techniques required to translate them into built structures. The second part discusses the design and development of a tangible machine-readable model to explain column-modeling methods interactively in educational contexts such as art exhibitions. It is designed to explain the principles underlying the column design by means of physical interaction without using mathematical terms or language.
Resumo:
A surface plasmon resonance-based solution affinity assay is described for measuring the Kd of binding of heparin/heparan sulfate-binding proteins with a variety of ligands. The assay involves the passage of a pre-equilibrated solution of protein and ligand over a sensor chip onto which heparin has been immobilised. Heparin sensor chips prepared by four different methods, including biotin–streptavidin affinity capture and direct covalent attachment to the chip surface, were successfully used in the assay and gave similar Kd values. The assay is applicable to a wide variety of heparin/HS-binding proteins of diverse structure and function (e.g., FGF-1, FGF-2, VEGF, IL-8, MCP-2, ATIII, PF4) and to ligands of varying molecular weight and degree of sulfation (e.g., heparin, PI-88, sucrose octasulfate, naphthalene trisulfonate) and is thus well suited for the rapid screening of ligands in drug discovery applications.
Resumo:
The prevalence and concentrations of Campylobacter jejuni, Salmonella spp. and enterohaemorrhagic E. coli (EHEC) were investigated in surface waters in Brisbane, Australia using quantitative PCR (qPCR) based methodologies. Water samples were collected from Brisbane City Botanic Gardens (CBG) Pond, and two urban tidal creeks (i.e., Oxley Creek and Blunder Creek). Of the 32 water samples collected, 8 (25%), 1 (3%), 9 (28%), 14 (44%), and 15 (47%) were positive for C. jejuni mapA, Salmonella invA, EHEC O157 LPS, EHEC VT1, and EHEC VT2 genes, respectively. The presence/absence of the potential pathogens did not correlate with either E. coli or enterococci concentrations as determined by binary logistic regression. In conclusion, the high prevalence, and concentrations of potential zoonotic pathogens along with the concentrations of one or more fecal indicators in surface water samples indicate a poor level of microbial quality of surface water, and could represent a significant health risk to users. The results from the current study would provide valuable information to the water quality managers in terms of minimizing the risk from pathogens in surface waters.
Resumo:
The effects of particulate matter on environment and public health have been widely studied in recent years. A number of studies in the medical field have tried to identify the specific effect on human health of particulate exposure, but agreement amongst these studies on the relative importance of the particles’ size and its origin with respect to health effects is still lacking. Nevertheless, air quality standards are moving, as the epidemiological attention, towards greater focus on the smaller particles. Current air quality standards only regulate the mass of particulate matter less than 10 μm in aerodynamic diameter (PM10) and less than 2.5 μm (PM2.5). The most reliable method used in measuring Total Suspended Particles (TSP), PM10, PM2.5 and PM1 is the gravimetric method since it directly measures PM concentration, guaranteeing an effective traceability to international standards. This technique however, neglects the possibility to correlate short term intra-day variations of atmospheric parameters that can influence ambient particle concentration and size distribution (emission strengths of particle sources, temperature, relative humidity, wind direction and speed and mixing height) as well as human activity patterns that may also vary over time periods considerably shorter than 24 hours. A continuous method to measure the number size distribution and total number concentration in the range 0.014 – 20 μm is the tandem system constituted by a Scanning Mobility Particle Sizer (SMPS) and an Aerodynamic Particle Sizer (APS). In this paper, an uncertainty budget model of the measurement of airborne particle number, surface area and mass size distributions is proposed and applied for several typical aerosol size distributions. The estimation of such an uncertainty budget presents several difficulties due to i) the complexity of the measurement chain, ii) the fact that SMPS and APS can properly guarantee the traceability to the International System of Measurements only in terms of number concentration. In fact, the surface area and mass concentration must be estimated on the basis of separately determined average density and particle morphology. Keywords: SMPS-APS tandem system, gravimetric reference method, uncertainty budget, ultrafine particles.
Resumo:
Optical absorption and EPR studies of the mineral tenorite, a cupric oxide, which originated from Mexico and contains 54.40 wt% of CuO. EPR spectral results indicate two Cu(II) closely interacting ions to give a d2 type structure. The calculated spin Hamiltonian at Rt and LNT are g = 2.160 and D = 125 G . The intensity of resonance line is not the same in low and high field regions. The optical absorption spectrum is due to Cu(II) which three sets of energies indicating Cu(II) in two independent tetragonal C4v symmetry, in addition to d2 structure of octahedral coordination. The octahedral and tetragonal field parameters are compared with those reported for several other copper containing minerals.
Resumo:
The central aim for the research undertaken in this PhD thesis is the development of a model for simulating water droplet movement on a leaf surface and to compare the model behavior with experimental observations. A series of five papers has been presented to explain systematically the way in which this droplet modelling work has been realised. Knowing the path of the droplet on the leaf surface is important for understanding how a droplet of water, pesticide, or nutrient will be absorbed through the leaf surface. An important aspect of the research is the generation of a leaf surface representation that acts as the foundation of the droplet model. Initially a laser scanner is used to capture the surface characteristics for two types of leaves in the form of a large scattered data set. After the identification of the leaf surface boundary, a set of internal points is chosen over which a triangulation of the surface is constructed. We present a novel hybrid approach for leaf surface fitting on this triangulation that combines Clough-Tocher (CT) and radial basis function (RBF) methods to achieve a surface with a continuously turning normal. The accuracy of the hybrid technique is assessed using numerical experimentation. The hybrid CT-RBF method is shown to give good representations of Frangipani and Anthurium leaves. Such leaf models facilitate an understanding of plant development and permit the modelling of the interaction of plants with their environment. The motion of a droplet traversing this virtual leaf surface is affected by various forces including gravity, friction and resistance between the surface and the droplet. The innovation of our model is the use of thin-film theory in the context of droplet movement to determine the thickness of the droplet as it moves on the surface. Experimental verification shows that the droplet model captures reality quite well and produces realistic droplet motion on the leaf surface. Most importantly, we observed that the simulated droplet motion follows the contours of the surface and spreads as a thin film. In the future, the model may be applied to determine the path of a droplet of pesticide along a leaf surface before it falls from or comes to a standstill on the surface. It will also be used to study the paths of many droplets of water or pesticide moving and colliding on the surface.
Resumo:
Abstract—Corneal topography estimation that is based on the Placido disk principle relies on good quality of precorneal tear film and sufficiently wide eyelid (palpebral) aperture to avoid reflections from eyelashes. However, in practice, these conditions are not always fulfilled resulting in missing regions, smaller corneal coverage, and subsequently poorer estimates of corneal topography. Our aim was to enhance the standard operating range of a Placido disk videokeratoscope to obtain reliable corneal topography estimates in patients with poor tear film quality, such as encountered in those diagnosed with dry eye, and with narrower palpebral apertures as in the case of Asian subjects. This was achieved by incorporating in the instrument’s own topography estimation algorithm an image processing technique that comprises a polar-domain adaptive filter and amorphological closing operator. The experimental results from measurements of test surfaces and real corneas showed that the incorporation of the proposed technique results in better estimates of corneal topography, and, in many cases, to a significant increase in the estimated coverage area making such an enhanced videokeratoscope a better tool for clinicians.
Resumo:
Objectives. To evaluate the performance of the dynamic-area high-speed videokeratoscopy technique in the assessment of tear film surface quality with and without the presence of soft contact lenses on eye. Methods. Retrospective data from a tear film study using basic high-speed videokeratoscopy, captured at 25 frames per second, (Kopf et al., 2008, J Optom) were used. Eleven subjects had tear film analysis conducted in the morning, midday and evening on the first and seventh day of one week of no lens wear. Five of the eleven subjects then completed an extra week of hydrogel lens wear followed by a week of silicone hydrogel lens wear. Analysis was performed on a 6 second period of the inter-blink recording. The dynamic-area high-speed videokeratoscopy technique uses the maximum available area of Placido ring pattern reflected from the tear interface and eliminates regions of disturbance due to shadows from the eyelashes. A value of tear film surface quality was derived using image rocessing techniques, based on the quality of the reflected ring pattern orientation. Results. The group mean tear film surface quality and the standard deviations for each of the conditions (bare eye, hydrogel lens, and silicone hydrogel lens) showed a much lower coefficient of variation than previous methods (average reduction of about 92%). Bare eye measurements from the right and left eyes of eleven individuals showed high correlation values (Pearson’s correlation r = 0.73, p < 0.05). Repeated measures ANOVA across the 6 second period of measurement in the normal inter-blink period for the bare eye condition showed no statistically significant changes. However, across the 6 second inter-blink period with both contact lenses, statistically significant changes were observed (p < 0.001) for both types of contact lens material. Overall, wearing hydrogel and silicone hydrogel lenses caused the tear film surface quality to worsen compared with the bare eye condition (repeated measures ANOVA, p < 0.0001 for both hydrogel and silicone hydrogel). Conclusions. The results suggest that the dynamic-area method of high-speed videokeratoscopy was able to distinguish and quantify the subtle, but systematic worsening of tear film surface quality in the inter-blink interval in contact lens wear. It was also able to clearly show a difference between bare eye and contact lens wearing conditions.
Resumo:
A new method for noninvasive assessment of tear film surface quality (TFSQ) is proposed. The method is based on high-speed videokeratoscopy in which the corneal area for the analysis is dynamically estimated in a manner that removes videokeratoscopy interference from the shadows of eyelashes but not that related to the poor quality of the precorneal tear film that is of interest. The separation between the two types of seemingly similar videokeratoscopy interference is achieved by region-based classification in which the overall noise is first separated from the useful signal (unaltered videokeratoscopy pattern), followed by a dedicated interference classification algorithm that distinguishes between the two considered interferences. The proposed technique provides a much wider corneal area for the analysis of TFSQ than the previously reported techniques. A preliminary study with the proposed technique, carried out for a range of anterior eye conditions, showed an effective behavior in terms of noise to signal separation, interference classification, as well as consistent TFSQ results. Subsequently, the method proved to be able to not only discriminate between the bare eye and the lens on eye conditions but also to have the potential to discriminate between the two types of contact lenses.
Resumo:
We conduct the detailed numerical investigation of a nanomanipulation and nanofabrication technique—thermal tweezers with dynamic evolution of surface temperature, caused by absorption of interfering laser pulses in a thin metalfilm or any other absorbing surface. This technique uses random Brownian forces in the presence of strong temperature modulation (surfacethermophoresis) for effective manipulation of particles/adatoms with nanoscale resolution. Substantial redistribution of particles on the surface is shown to occur with the typical size of the obtained pattern elements of ∼100 nm, which is significantly smaller than the wavelength of the incident pulses used (532 nm). It is also demonstrated that thermal tweezers based on surfacethermophoresis of particles/adatoms are much more effective in achieving permanent high maximum-to-minimum concentration ratios than bulk thermophoresis, which is explained by the interaction of diffusing particles with the periodic lattice potential on the surface. Typically required pulse regimes including pulse lengths and energies are also determined. The approach is applicable for reproducing any holographically achievable surfacepatterns, and can thus be used for engineering properties of surfaces including nanopatterning and design of surface metamaterials.