979 resultados para Specialties, Dental
Resumo:
Aim To determine the distribution of the NPY Y1 receptor in carious and noncarious human dental pulp tissue using immunohistochemistry. A subsidiary aim was to confirm the presence of the NPY Y1 protein product in membrane fractions of dental pulp tissue from carious and noncarious teeth using western blotting. Methodology Twenty two dental pulp samples were collected from carious and noncarious extracted teeth. Ten samples were processed for immunohistochemistry using a specific antibody to the NPY Y1 receptor. Twelve samples were used to obtain membrane extracts which were electrophoresed, blotted onto nitrocellulose and probed with NPY Y1 receptor antibody. Kruskal-Wallis one-way analysis of variance was employed to test for overall statistical differences between NPY Y1 levels in noncarious, moderately carious and grossly carious teeth. Results Neuropeptide Y Y1 receptor immunoreactivity was detected on the walls of blood vessels in pulp tissue from noncarious teeth. In carious teeth NPY Y1 immunoreactvity was observed on nerve fibres, blood vessels and inflammatory cells. Western blotting indicated the presence and confirmed the variability of NPY Y1 receptor protein expression in solubilised membrane preparations of human dental pulp tissue from carious and noncarious teeth. Conclusions Neuropeptide Y Y1 is expressed in human dental pulp tissue with evidence of increased expression in carious compared with noncarious teeth, suggesting a role for NPY Y1 in modulation of caries induced pulpal inflammation. © 2008 International Endodontic Journal.
Resumo:
Abstract
INTRODUCTION:
Neuropeptides play an important role in inflammation and repair and have been implicated in mediating angiogenesis. Pulp fibroblasts express neuropeptide receptors, and the aim of this research was to investigate whether neuropeptides could regulate angiogenic growth factor expression in vitro
METHODS:
An angiogenic array was used to determine the levels of 10 angiogenic growth factors expressed by human pulp fibroblasts.
RESULTS:
Pulp fibroblasts were shown to express angiogenin, angiopoietin-2, epidermal growth factor, basic fibroblast growth factor, heparin-binding epidermal growth factor, hepatocyte growth factor, leptin, platelet-derived growth factor, placental growth factor, and vascular endothelial growth factor. Furthermore, the neuropeptides substance P, calcitonin gene-related peptide, vasoactive intestinal polypeptide, and neuropeptide Y altered angiogenic growth factor expression in vitro.
CONCLUSIONS:
The regulation of angiogenic growth factor expression by neuropeptides suggests a novel role for neuropeptides in pulpal inflammation and repair.
Resumo:
Protease-activated receptors (PARs) are G-protein-coupled receptors that are activated enzymatically by proteolysis of an N-terminal domain. The cleavage and activation of PARs by serine proteases represent a novel mechanism by which such enzymes could influence the host inflammatory response. The aim of this study was to determine whether PAR-2 expression and activation were increased in dental caries. Using immunohistochemistry, we showed PAR-2 to be localized to pulp cells subjacent to caries lesions, but minimally expressed by healthy pulp tissue. Trypsin and the PAR-2 agonist (PAR2-AP) activated PAR-2 in an in vitro functional assay. Endogenous molecules present in pulp cell lysates from carious teeth specifically activated PAR-2, but those from healthy teeth failed to do so. The activation of PAR-2 in vitro was shown to increase the expression of the pro-inflammatory mediator cyclo-oxygenase-2 (COX-2), providing a mechanism whereby PAR-2 could modulate pulpal inflammation.