994 resultados para Soi


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrical detection of solid-state charge qubits requires ultrasensitive charge measurement, typically using a quantum point contact or single-electron-transistor, which imposes strict limits on operating temperature, voltage and current. A conventional FET offers relaxed operating conditions, but the back-action of the channel charge is a problem for such small quantum systems. Here, we discuss the use of a percolation transistor as a measurement device, with regard to charge sensing and backaction. The transistor is based on a 10nm thick SOI channel layer and is designed to measure the displacement of trapped charges in a nearby dielectric. At cryogenic temperatures, the trapped charges result in strong disorder in the channel layer, so that current is constrained to a percolation pathway in sub-threshold conditions. A microwave driven spatial Rabi oscillation of the trapped charge causes a change in the percolation pathway, which results in a measurable change in channel current. © The Electrochemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is considerable demand for sensors that are capable of detecting ultra-low concentrations (sub-PPM) of toxic gases in air. Of particular interest are NO2 and CO that are exhaust products of internal combustion engines. Electrochemical (EC) sensors are widely used to detect these gases and offer the advantages of low power, good selectivity and temporal stability. However, EC sensors are large (1 cm3), hand-made and thus expensive ($25). Consequently, they are unsuitable for the low-cost automotive market that demands units for less than $10. One alternative technology is SnO2 or WO3 resistive gas sensors that are fabricated in volume today using screen-printed films on alumina substrates and operate at 400°C. Unfortunately, they suffer from several disadvantages: power consumption is high 200 mW; reproducibility of the sensing element is poor; and cross-sensitivity is high. © 2013 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The design, 3D FEM modelling and measurement results of a novel high temperature, low power SOI CMOS MEMS thermal conductivity gas sensor are presented here. The sensor consists of a circular membrane with an embedded tungsten micro-heater. The high sensing capability is based on the temperature sensitivity of the resistive heating element. The sensor was fabricated at a commercial foundry using a 1 μm process and measures only 1×1 mm 2. The circular membrane has a 600 μm diameter while the heating element has a 320 μm diameter. Measurement results show that for a constant power consumption of 75 mW the heater temperature was 562.4°C in air, 565.9°C in N2, 592.5°C for 1 % H2 in Ar and 599.5°C in Ar. © 2013 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 200V lateral insulated gate bipolar transistor (LIGBT) was successfully developed using lateral superjunction (SJ) in 0.18μm partial silicon on insulator (SOI) HV process. The results presented are based on extensive experimental measurements and numerical simulations. For an n-type lateral SJ LIGBT, the p layer in the SJ drift region helps in achieving uniform electric field distribution. Furthermore, the p-pillar contributes to the on-state current. Furthermore, the p-pillar contributes to sweep out holes during the turn-off process, thus leading to faster removal of plasma. To realize this device, one additional mask layer is required in the X-FAB 0.18μm partial SOI HV process. © 2013 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present for the first time, a novel silicon on insulator (SOI) complementary metal oxide semiconductor (CMOS) MEMS thermal wall shear stress sensor based on a tungsten hot-film and three thermopiles. These devices have been fabricated using a commercial 1 μm SOI-CMOS process followed by a deep reactive ion etch (DRIE) back-etch step to create silicon oxide membranes under the hot-film for effective thermal isolation. The sensors show an excellent repeatability of electro-thermal characteristics and can be used to measure wall shear stress in both constant current anemometric as well as calorimetric modes. The sensors have been calibrated for wall shear stress measurement of air in the range of 0-0.48 Pa using a suction type, 2-D flow wind tunnel. The calibration results show that the sensors have a higher sensitivity (up to four times) in calorimetric mode compared to anemometric mode for wall shear stress lower than 0.3 Pa. © 2013 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Design, FEM modelling and characterization of a novel dual mode thermal conductivity and infrared absorption sensor using SOI CMOS technology is reported. The dual mode sensing capability is based on the temperature sensitivity and wideband infrared radiation emission of the resistive heating element. The sensor was fabricated at a commercial foundry using a 1 μm process and measures only 1×1 mm2. Infrared detectors usually use thermopiles in addition to a separate IR source. A single highly responsive dual mode source and sensing element targeting not only low molecular mass gases but also greenhouse gases, while consuming 40 mW power at 700°C in synthetic air, thus makes this sensor particularly viable for battery powered handheld devices. © 2013 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Classical high voltage devices fabricated on SOI substrates suffer from a backside coupling effect which could result in premature breakdown. This phenomenon becomes more prominent if the structure is an IGBT which features a p-type injector. To suppress the premature breakdown due to crowding of electro-potential lines within a confined SOI/buried oxide structure, the partial SOI (PSOI) technique is being introduced. This paper analyzes the off-state behavior of an n-type Superjunction (SJ) LIGBT fabricated on PSOI substrate. During the initial development stage the SJ LIGBT was found to have very high leakage. This was attributed to the back and side coupling effects. This paper discusses these effects and shows how this problem could be successfully addressed with minimal modifications of device layout. The off-state performance of the SJ LIGBT at different temperatures is assessed and a comparison to an equivalent LDMOSFET is given. © 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Submitted by zhangdi (zhangdi@red.semi.ac.cn) on 2009-04-13T11:45:31Z

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Submitted by zhangdi (zhangdi@red.semi.ac.cn) on 2009-04-13T11:45:31Z

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Submitted by zhangdi (zhangdi@red.semi.ac.cn) on 2009-04-13T11:45:31Z

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Submitted by zhangdi (zhangdi@red.semi.ac.cn) on 2009-04-13T11:45:31Z

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Submitted by zhangdi (zhangdi@red.semi.ac.cn) on 2009-04-13T11:45:31Z

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Submitted by zhangdi (zhangdi@red.semi.ac.cn) on 2009-04-13T11:45:31Z

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Submitted by zhangdi (zhangdi@red.semi.ac.cn) on 2009-04-13T11:45:31Z

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Submitted by zhangdi (zhangdi@red.semi.ac.cn) on 2009-04-13T11:45:31Z