977 resultados para Slash (Logging)
Resumo:
The majority of the world’s citizens now live in cities. Although urban planning can thus be thought of as a field with significant ramifications on the human condition, many practitioners feel that it has reached the crossroads in thought leadership between traditional practice and a new, more participatory and open approach. Conventional ways to engage people in participatory planning exercises are limited in reach and scope. At the same time, socio-cultural trends and technology innovation offer opportunities to re-think the status quo in urban planning. Neogeography introduces tools and services that allow non-geographers to use advanced geographical information systems. Similarly, is there potential for the emergence of a neo-planning paradigm in which urban planning is carried out through active civic engagement aided by Web 2.0 and new media technologies thus redefining the role of practicing planners? This paper traces a number of evolving links between urban planning, neogeography and information and communication technology. Two significant trends – participation and visualisation – with direct implications for urban planning are discussed. Combining advanced participation and visualisation features, the popular virtual reality environment Second Life is then introduced as a test bed to explore a planning workshop and an integrated software event framework to assist narrative generation. We discuss an approach to harness and analyse narratives using virtual reality logging to make transparent how users understand and interpret proposed urban designs.
Resumo:
The social construction of sexuality over the past one hundred and fifty years has created a dichotomy between heterosexual and non-heterosexual identities that essentially positions the former as “normal” and the latter as deviant. Even Kinsey’s and others’ work on the continuum of sexualities did little to alter the predominantly heterosexist perception of the non-heterosexual as “other” (Kinsey, Pomeroy and Martin 2007; Esterberg 2006; Franceour and Noonan 2007). Some political action and academic work is beginning to challenge such perceptions. Even some avenues of social interaction, such as the recent proliferation of online communities, may also challenge such views, or at least contribute to their being rethought in some ways. This chapter explores a specific kind of online community devoted to fan fiction, specifically homoerotic – or what is known colloquially as “slash” – fan fiction. Fan fiction is fiction, published on the internet, and written by fans of well-known books and television shows, using the characters to create new and varied plots. “Slash” refers to the pairing of two of the male characters in a romantic relationship, and the term comes from the punctuation mark dividing the named pair as, for example, Spock/Kirk from the Star Trek television series. Although there are some slash fan-fiction stories devoted to female-female relationships – called “femmeslash” – the term “slash” generally refers to male-male relationships, and will be utilized throughout this chapter, given that the research discussed focuses on communities centered around one such male pairing.
Resumo:
Unified Enterprise application security is a new emerging approach for providing protection against application level attacks. Conventional application security approach that consists of embedding security into each critical application leads towards scattered security mechanism that is not only difficult to manage but also creates security loopholes. According to the CSIIFBI computer crime survey report, almost 80% of the security breaches come from authorized users. In this paper, we have worked on the concept of unified security model, which manages all security aspect from a single security window. The basic idea is to keep business functionality separate from security components of the application. Our main focus was on the designing of frame work for unified layer which supports single point of policy control, centralize logging mechanism, granular, context aware access control, and independent from any underlying authentication technology and authorization policy.
Resumo:
Virtual fencing has the potential to control grazing livestock. Understanding and refi ning the cues that can alter behaviour is an integral part of autonomous animal control. A series of tests have been completed to explore the relationship between temperament and control. Prior to exposure to virtual fencing control the animals were scored for temperament using fl ight speed and a sociability index using contact logging devices. The behavioural response of 30, Belmont Red steers were observed for behavioural changes when presented with cues prior to receiving an electrical stimulation. A control and four treatments designed to interrupt the animal’s movement down an alley were tested. The treatments consisted of sound plus electrical stimulation, vibration plus electrical stimulation, a visual cue plus electrical stimulation and electrical stimulation by itself. The treatments were randomly applied to each animal over fi ve consecutive trials. A control treatment in which no cues were applied was used to establish a basal behavioural pattern. A trial was considered completed after each animal had been retained behind the cue barrier for at least 60 sec. All cues and electrical stimulation were manually applied from a laptop located on a portable 3.5 m tower located immediately outside the alley. The electric stimulation consisted of 1.0 Kv of electricity. Electric stimulation, sound and vibration along with the Global Position System (GPS) hardware to autonomously record the animal’s path within the alley were recorded every second.
Resumo:
The neutron logging method has been widely used for field measurement of soil moisture content. This non-destructive method permitted the measurement of in-situ soil moisture content at various depths without the need for burying any sensor. Twenty-three sites located around regional Melbourne have been selected for long term monitoring of soil moisture content using neutron probe. Soil samples collected during the installation are used for site characterisation and neutron probe calibration purposes. A linear relationship is obtained between the corrected neutron probe reading and moisture content for both the individual and combined data from seven sites. It is observed that the liner relationship, developed using combined data, can be used for all sites with an average accuracy of about 80%. Monitoring of the variation of soil moisture content with depth in six months for two sites is presented in this paper.
Resumo:
The Internet presents a constantly evolving frontier for criminology and policing, especially in relation to online predators – paedophiles operating within the Internet for safer access to children, child pornography and networking opportunities with other online predators. The goals of this qualitative study are to undertake behavioural research – identify personality types and archetypes of online predators and compare and contrast them with behavioural profiles and other psychological research on offline paedophiles and sex offenders. It is also an endeavour to gather intelligence on the technological utilisation of online predators and conduct observational research on the social structures of online predator communities. These goals were achieved through the covert monitoring and logging of public activity within four Internet Relay Chat(rooms) (IRC) themed around child sexual abuse and which were located on the Undernet network. Five days of monitoring was conducted on these four chatrooms between Wednesday 1 to Sunday 5 April 2009; this raw data was collated and analysed. The analysis identified four personality types – the gentleman predator, the sadist, the businessman and the pretender – and eight archetypes consisting of the groomers, dealers, negotiators, roleplayers, networkers, chat requestors, posters and travellers. The characteristics and traits of these personality types and archetypes, which were extracted from the literature dealing with offline paedophiles and sex offenders, are detailed and contrasted against the online sexual predators identified within the chatrooms, revealing many similarities and interesting differences particularly with the businessman and pretender personality types. These personality types and archetypes were illustrated by selecting users who displayed the appropriate characteristics and tracking them through the four chatrooms, revealing intelligence data on the use of proxies servers – especially via the Tor software – and other security strategies such as Undernet’s host masking service. Name and age changes, which is used as a potential sexual grooming tactic was also revealed through the use of Analyst’s Notebook software and information on ISP information revealed the likelihood that many online predators were not using any safety mechanism and relying on the anonymity of the Internet. The activities of these online predators were analysed, especially in regards to child sexual grooming and the ‘posting’ of child pornography, which revealed a few of the methods in which online predators utilised new Internet technologies to sexually groom and abuse children – using technologies such as instant messengers, webcams and microphones – as well as store and disseminate illegal materials on image sharing websites and peer-to-peer software such as Gigatribe. Analysis of the social structures of the chatrooms was also carried out and the community functions and characteristics of each chatroom explored. The findings of this research have indicated several opportunities for further research. As a result of this research, recommendations are given on policy, prevention and response strategies with regards to online predators.
Resumo:
A key concern in the field of contemporary fashion/textiles design is the emergence of ‘fast fashion’: best explained as "buy it Friday, wear it Saturday and throw it away on Sunday" (O'Loughlin, 2007). In this contemporary retail atmosphere of “pile it high: sell it cheap” and “quick to market”, even designer goods have achieved a throwaway status. This modern culture of consumerism is the antithesis of sustainability and is proving a dilemma surrounding sustainable practice for designers and producers in the disciplines (de Blas, 2010). Design researchers including those in textiles/fashion have begun to explore what is a key question in the 21st century in order to create a vision and reason for their disciplines: Can products be designed to have added value to the consumer and hence contribute to a more sustainable industry? Fashion Textiles Design has much to answer for in contributing to the problems of unsustainable practices on a global scale in design, production and waste. However, designers within this field also have great potential to contribute to practical ‘real world’ solutions. ----- ----- This paper provides an overview of some of the design and technological developments from the fashion/textiles industry, endorsing a model where designers and technicians use their transferrable skills for wellbeing rather than desire. Smart materials in the form of responsive and adaptive fibres and fabrics combined with electro active devices, and ICT are increasingly shaping many aspects of society particularly in the leisure industry and interactive consumer products are ever more visible in healthcare. Combinations of biocompatible delivery devices with bio sensing elements can create analyse, sense and actuate early warning and monitoring systems which can be linked to data logging and patient records via intelligent networks. Patient sympathetic, ‘smart’ fashion/textiles applications based on interdisciplinary expertise utilising textiles design and technology is emerging. An analysis of a series of case studies demonstrates the potential of fashion textiles design practitioners to exploit the concept of value adding through technological garment and textiles applications and enhancement for health and wellbeing and in doing so contribute to a more sustainable future fashion/textiles design industry.
Resumo:
This paper addresses the tradeoff between energy consumption and localization performance in a mobile sensor network application. The focus is on augmenting GPS location with more energy-efficient location sensors to bound position estimate uncertainty in order to prolong node lifetime. We use empirical GPS and radio contact data from a largescale animal tracking deployment to model node mobility, GPS and radio performance. These models are used to explore duty cycling strategies for maintaining position uncertainty within specified bounds. We then explore the benefits of using short-range radio contact logging alongside GPS as an energy-inexpensive means of lowering uncertainty while the GPS is off, and we propose a versatile contact logging strategy that relies on RSSI ranging and GPS lock back-offs for reducing the node energy consumption relative to GPS duty cycling. Results show that our strategy can cut the node energy consumption by half while meeting application specific positioning criteria.
Resumo:
Iron (Fe) biogeochemistry is potentially of environmental significance in plantation-forested, subtropical coastal ecosystems where soil disturbance and seasonal water logging may lead to elevation of Fe mobilization and associated water quality deterioration. Using wet-chemical extraction and laboratory cultivation, we examined the occurrence of Fe forms and associated bacterial populations in diverse soils of a representative subtropical Australian coastal catchment (Poona Creek). Total reactive Fe was abundant throughout 0e30 cm soil cores, consisting primarily of crystalline forms in well-drained sand soils and water-logged loam soils, whereas in water-logged, low clay soils, over half of total reactive Fe was present in poorly-crystalline forms due to organic and inorganic complexation, respectively. Forestry practices such as plantation clear-felling and replanting, seasonal water logging and mineral soil properties significantly impacted soil organic carbon (C), potentially-bioavailable Fe pools and densities of S-, but not Fe-, bacterial populations. Bacterial Fe(III) reduction and abiotic Fe(II) oxidation, as well as chemolithotrophic S oxidation and aerobic, heterotrophic respiration were integral to catchment terrestrial FeeC cycling. This work demonstrates bacterial involvement in terrestrial Fe cycling in a subtropical coastal circumneutral-pH ecosystem.
Resumo:
Iron (Fe) is the fourth most abundant element in the Earth’s crust. Excess Fe mobilization from terrestrial into aquatic systems is of concern for deterioration of water quality via biofouling and nuisance algal blooms in coastal and marine systems. Substantial Fe dissolution and transport involve alternate Fe(II) oxidation followed by Fe(III) reduction, with a diversity of Bacteria and Archaea acting as the key catalyst. Microbially-mediated Fe cycling is of global significance with regard to cycles of carbon (C), sulfur (S) and manganese (Mn). However, knowledge regarding microbial Fe cycling in circumneutral-pH habitats that prevail on Earth has been lacking until recently. In particular, little is known regarding microbial function in Fe cycling and associated Fe mobilization and greenhouse (CO2 and CH4, GHG) evolution in subtropical Australian coastal systems where microbial response to ambient variations such as seasonal flooding and land use changes is of concern. Using the plantation-forested Poona Creek catchment on the Fraser Coast of Southeast Queensland (SEQ), this research aimed to 1) study Fe cycling-associated bacterial populations in diverse terrestrial and aquatic habitats of a representative subtropical coastal circumneutral-pH (4–7) ecosystem; and 2) assess potential impacts of Pinus plantation forestry practices on microbially-mediated Fe mobilization, organic C mineralization and associated GHG evolution in coastal SEQ. A combination of wet-chemical extraction, undisturbed core microcosm, laboratory bacterial cultivation, microscopy and 16S rRNA-based molecular phylogenetic techniques were employed. The study area consisted primarily of loamy sands, with low organic C and dissolved nutrients. Total reactive Fe was abundant and evenly distributed within soil 0–30 cm profiles. Organic complexation primarily controlled Fe bioavailability and forms in well-drained plantation soils and water-logged, native riparian soils, whereas tidal flushing exerted a strong “seawater effect” in estuarine locations and formed a large proportion of inorganic Fe(III) complexes. There was a lack of Fe(II) sources across the catchment terrestrial system. Mature, first-rotation plantation clear-felling and second-rotation replanting significantly decreased organic matter and poorly crystalline Fe in well-drained soils, although variations in labile soil organic C fractions (dissolved organic C, DOC; and microbial biomass C, MBC) were minor. Both well-drained plantation soils and water-logged, native-vegetation soils were inhabited by a variety of cultivable, chemotrophic bacterial populations capable of C, Fe, S and Mn metabolism via lithotrophic or heterotrophic, (micro)aerobic or anaerobic pathways. Neutrophilic Fe(III)-reducing bacteria (FeRB) were most abundant, followed by aerobic, heterotrophic bacteria (heterotrophic plate count, HPC). Despite an abundance of FeRB, cultivable Fe(II)-oxidizing bacteria (FeOB) were absent in associated soils. A lack of links between cultivable Fe, S or Mn bacterial densities and relevant chemical measurements (except for HPC correlated with DOC) was likely due to complex biogeochemical interactions. Neither did variations in cultivable bacterial densities correlate with plantation forestry practices, despite total cultivable bacterial densities being significantly lower in estuarine soils when compared with well-drained plantation soils and water-logged, riparian native-vegetation soils. Given that bacterial Fe(III) reduction is the primary mechanism of Fe oxide dissolution in soils upon saturation, associated Fe mobilization involved several abiotic and biological processes. Abiotic oxidation of dissolved Fe(II) by Mn appeared to control Fe transport and inhibit Fe dissolution from mature, first-rotation plantation soils post-saturation. Such an effect was not observed in clear-felled and replanted soils associated with low SOM and potentially low Mn reactivity. Associated GHG evolution post-saturation mainly involved variable CO2 emissions, with low, but consistently increasing CH4 effluxes in mature, first-rotation plantation soil only. In comparison, water-logged soils in the riparian native-vegetation buffer zone functioned as an important GHG source, with high potentials for Fe mobilization and GHG, particularly CH4 emissions in riparian loam soils associated with high clay and crystalline Fe fractions. Active Fe–C cycling was unlikely to occur in lower-catchment estuarine soils associated with low cultivable bacterial densities and GHG effluxes. As a key component of bacterial Fe cycling, neutrophilic FeOB widely occurred in diverse aquatic, but not terrestrial, habitats of the catchment study area. Stalked and sheathed FeOB resembling Gallionella and Leptothrix were limited to microbial mat material deposited in surface fresh waters associated with a circumneutral-pH seep, and clay-rich soil within riparian buffer zones. Unicellular, Sideroxydans-related FeOB (96% sequence identity) were ubiquitous in surface and subsurface freshwater environments, with highest abundance in estuary-adjacent shallow coastal groundwater water associated with redox transition. The abundance of dissolved C and Fe in the groundwater-dependent system was associated with high numbers of cultivable anaerobic, heterotrophic FeRB, microaerophilic, putatively lithotrophic FeOB and aerobic, heterotrophic bacteria. This research represents the first study of microbial Fe cycling in diverse circumneutral-pH environments (terrestrial–aquatic, freshwater–estuarine, surface–subsurface) of a subtropical coastal ecosystem. It also represents the first study of its kind in the southern hemisphere. This work highlights the significance of bacterial Fe(III) reduction in terrestrial, and bacterial Fe(II) oxidation in aquatic catchment Fe cycling. Results indicate the risk of promotion of Fe mobilization due to plantation clear-felling and replanting, and GHG emissions associated with seasonal water-logging. Additional significant outcomes were also achieved. The first direct evidence for multiple biomineralization patterns of neutrophilic, microaerophilic, unicellular FeOB was presented. A putatively pure culture, which represents the first cultivable neutrophilic FeOB from the southern hemisphere, was obtained as representative FeOB ubiquitous in diverse catchment aquatic habitats.
Resumo:
This study examined the potential for Fe mobilization and greenhouse gas (GHG, e.g. CO2, and CH4) evolution in SEQ soils associated with a range of plantation forestry practices and water-logged conditions. Intact, 30-cm-deep soil cores collected from representative sites were saturated and incubated for 35 days in the laboratory, with leachate and headspace gas samples periodically collected. Minimal Fe dissolution was observed in well-drained sand soils associated with mature, first-rotation Pinus and organic Fe complexation, whereas progressive Fe dissolution occurred over 14 days in clear-felled and replanted Pinus soils with low organic matter and non-crystalline Fe fractions. Both CO2 and CH4 effluxes were relatively lower in clear-felled and replanted soils compared with mature, first-rotation Pinus soils, despite the lack of statistically significant variations in total GHG effluxes associated with different forestry practices. Fe dissolution and GHG evolution in low-lying, water-logged soils adjacent to riparian and estuarine, native-vegetation buffer zones were impacted by mineral and physical soil properties. Highest levels of dissolved Fe and GHG effluxes resulted from saturation of riparian loam soils with high Fe and clay content, as well as abundant organic material and Fe-metabolizing bacteria. Results indicate Pinus forestry practices such as clear-felling and replanting may elevate Fe mobilization while decreasing CO2 and CH4 emissions from well-drained, SEQ plantation soils upon heavy flooding. Prolonged water-logging accelerates bacterially mediated Fe cycling in low-lying, clay-rich soils, leading to substantial Fe dissolution, organic matter mineralization, and CH4 production in riparian native-vegetation buffer zones.
Resumo:
Background: This study explored the experiences of university employees that participated in a walking intervention that encouraged individuals to walk more throughout their workday. The 10-week program was comprised of 5 phases (i.e. baseline, anticipating barriers, short planned walks, longer planned walks and maintenance) and utilized a pedometer diary and an online website for logging steps. The pedometer diary included “action plans” for addressing barriers and planning walking and the online dashboard provided graphical outputs that allowed participants to visualize whether they were reaching or exceeding their step targets. Methods: A subsample of 12 academic and administrative employees from the study completed open ended questionnaires at the end of the study. The questions focused on capturing the major themes of benefits/mediators and problems/moderators of the program and were assessed using phenomenological approaches. Results: Participants found a raised consciousness of physical inactivity throughout the work day. They also found it useful to have a graphical display of physical activity patterns, but found time constraints and lack of managerial support to be the primary barriers/moderators of the program. Those most likely to withdraw from the program experienced technical difficulties with objective monitors and the online website. Conclusions: Findings highlight the value in being involved in a group forum and provide insights into the challenges of supporting such programs within the workplace.
Resumo:
Young drivers aged 17-24 years are at a risk of death and injury from road crashes primarily due to their age and inexperience on the road. Our research aims to investigate if a gamified mobile tracking and intervention tool can help to address this issue. We aim to build a smartphone application to support the current process of logging driving hours using a physical logbook and pen in Queensland. This provides an easier way to log driving hours than recording them in a logbook. In an attempt to engage Learners and encourage them to undertake more diverse driving practice we will explore how game elements can be integrated into the experience to motivate Learners. Previous research in other domains has shown that framing tasks as game-like can help engage and motivate users, however the addition of game elements to this space provides some interesting design challenges. This paper presents an overview of the research and presents these challenges for further discussion.
Resumo:
GPS is a commonly used and convenient technology for determining absolute position in outdoor environments, but its high power consumption leads to rapid battery depletion in mobile devices. An obvious solution is to duty cycle the GPS module, which prolongs the device lifetime at the cost of increased position uncertainty while the GPS is off. This article addresses the trade-off between energy consumption and localization performance in a mobile sensor network application. The focus is on augmenting GPS location with more energy-efficient location sensors to bound position estimate uncertainty while GPS is off. Empirical GPS and radio contact data from a large-scale animal tracking deployment is used to model node mobility, radio performance, and GPS. Because GPS takes a considerable, and variable, time after powering up before it delivers a good position measurement, we model the GPS behaviour through empirical measurements of two GPS modules. These models are then used to explore duty cycling strategies for maintaining position uncertainty within specified bounds. We then explore the benefits of using short-range radio contact logging alongside GPS as an energy-inexpensive means of lowering uncertainty while the GPS is off, and we propose strategies that use RSSI ranging and GPS back-offs to further reduce energy consumption. Results show that our combined strategies can cut node energy consumption by one third while still meeting application-specific positioning criteria.