939 resultados para Simuliidae--Phylogeny.
Resumo:
水蛇亚科属于游蛇科,包含10个属。其中7个属为单型属。选取水蛇亚科14个形态学特征进行支序分析,并利用计算机软件Hennig86对水蛇亚科中8个属之间的系统发育关系进行初步探讨,结果显示水蛇亚科分为两支Gerarda和Fordonia两个属构成姊妹群,Cerberus、Erpeton和Homalopsis三个属也构成单系群,与Vorisetal(2002)的分子系统树相同,但Cantoria属的地位则与Vorisetal(2002)的明显不同。
Resumo:
为了研究猕猴属的颅骨差异性, 从而探 讨种间在形态、功能和系统分化方面的相互联系, 测定了11 个猕猴种类的77 个颅骨变量, 用于主成 分分析和判别分析。应用巢式分析方法, 分析过程 包括3 个步骤。所有变量根据功能和部位的不同首 先分为7 个单位: 下颌、下颌齿、上颌齿、上面 颅、下面颅、面颅后部和颅腔。第2 步根据它们所 揭示的相似性(具有相同的种间及种内差异性类 型) 合并为3 个解剖区域: 咀嚼器官(下颌、下颌 齿、上颌齿) , 面颅(上面颅和下面颅) 和整个面 颅后(面颅后和颅腔) 。第3 步从3 个解剖区域筛 选出27 个变量代表整个颅骨的形态结构。除了寻 找不同的功能单位, 解剖区域及总的颅骨具有不同 的种间和种内差异类型外, 此过程对筛出研究意义 不大的变量起很重要的作用。上述分析过程分别用 于对雌、雄性和两性的研究。所研究的11 个猕猴 种类间形成了3 聚类。第1 类包括食蟹猴(Macaca f ascicularis) 、戴帽猴( M1 sinica) 和头巾猴( M1 radiata) ; 第2 类包括猕猴( M1 mulatta ) 、熊猴 (M1 assensis ) 、平顶猴( M1 nemestrina ) 和黑猿 (M1 nigra) ; 第3 类包括蛮猴( M1 sylvanus ) 、日 本猴( M1 f uscata) 、短尾猴( M1 arctoides ) 和藏 酋猴(M1 thibetana) 。分别从两性差异、食物、生态、分类和系统分化方面进行了差异性讨论, 结果 认为猕猴种间颅骨的差异性主要是由于系统分化不 同而引起个体差异所致, 即种间和种内存在的个体 差异。在主成分分析中, 这些差异在不同的区域表 现在不同的成分上。在咀嚼器官上种间的差异在第 1 主成分上, 种内的差异则在第2 主成分上。面颅 的情况则刚好相反。这两种差异在面颅后及颅腔上 则被第1 和第2 主成分所平分。这样, 种间的差异 在咀嚼器官上大于种内的差异。种内的差异在面颅 上则大于种间的差异。这两种差异在面颅后和颅腔 上则几乎大小相等。这一研究结果表明, 与传统的 概念不同, 第2 主成分不仅仅表现形态、形状的差 异, 而如同第1 主成分一样, 也表现形态的大小成 分。此研究所揭示的猕猴种间关系部分与Foden (1976 , 1980) 和Delson (1980) 相同。如平顶猴 与黑猿、短尾猴、藏酋猴和熊猴的关系。食蟹猴、 头巾猴和戴帽猴的关系则不同, 并已得到有关分子 生物学的支持, 此3 种可能来自同一祖先并经历相 同的扩散过程。此研究所设计的巢式分析过程提供 了一种很好的差异性研究手段。最终结果暗示在形 态学研究中仅仅考虑某一区域的形态结构是很不够 的, 因为不同的部分具有不同的种间及种内差异类 型。这在化石研究中尤其要注意。
Resumo:
Phylogenetic relationships of six species of Ochotona were investigated using mitochondrial DNA (mtDNA) restriction-site analysis. The phylogenetic tree constructed using PAUP was based on 62 phylogenetically informative sites with O. erythrotis designated as an outgroup. Two clades were evident. One contained O. curzoniae, O. huangensis, and O. thibetana. in the second, O. daurica was a sister taxon of O. cansus. The five species appear to come from different maternal lineages. The branching structure of the tree and sequence divergence confirm that huangensis and cansus are distinct species, and that mol-osa is a synonym of O. cansus rather than O. thibetana. Divergence time, estimated from genetic distances, indicates that the ancestors of the two maternal lineages diverged ca. 6.5 x 10(6) years ago. O. curzoniae diverged from O. huangensis, and O. daurica diverged from O. cansus, at about the same time (ca. 3.4 x 10(6) years ago). These data suggest a period of rapid radiation of the genus Ochotona in China, perhaps during the late Pliocene. These calculations correspond roughly to tectonic events and environmental changes in China throughout this period, and appear to be substantiated by the fossil record.
Resumo:
We investigated the relationships of Asian bufonids using partial sequences of mitochondrial DNA genes. Twenty-six samples representing 14 species of Bufo from China and Vietnam and 2 species of Torrentophryne from China were examined. Three samples of Bufo viridis from Armenia and Georgia were also sequenced to make a comparison to its sibling tetraploid species B. danatensis. Bufo americanus, from Canada, was used as the outgroup. Sequences from the 12S ribosomal RNA, 16S ribosomal RNA, cytochrome b, and the control region were analyzed using parsimony. East Asian bufonids were grouped into two major clades. One clade included B. andrewsi, B. bankorensis, B. gargarizans, B. tibetanus, B. tuberculatus, its sister clade B. cryptotympanicus, and the 2 species of Torrentophryne. The second clade consisted of B. galeatus, B. himalayanus, B. melanostictus, and a new species from Vietnam. The placement of three taxa (B. raddei B. viridis, and its sister species, B. danatensis) was problematic. The genus Torrentophryne should be synonymized with Bufo to remove paraphyly. Because B. raddei does not belong to the clade that includes B. viridis and B. danatensis, it was removed from the viridis species group. The species status of B bankorensis from Taiwan is evaluated. (C) 2000 Academic Press.
Resumo:
Molecular phylogeny of three genera containing nine species and subspecies of the specialized schizothoracine fishes are investigated based on the complete nucleotide sequence of mitochondrial cytochrome b gene. Meantime relationships between the main cladogenetic events of the specialized schizothoracine fishes and the stepwise uplift of the Qinghai-Tibetan Plateau are also conducted using the molecular clock, which is calibrated by geological isolated events between the upper reaches of the Yellow River and the Qinghai Lake. Results indicated that the specialized schizothoracine fishes are not a monophyly. Five species and subspecies of Ptychobarbus form a monophyly. But three species of Gymnodiptychus do not form a monophyly. Gd. integrigymnatus is a sister taxon of the highly specialized schizothoracine fishes while Gd. pachycheilus has a close relation with Gd. dybowskii, and both of them are as a sister group of Diptychus maculatus. The specialized schizothoracines fishes might have originated during the Miocene (about 10 MaBP), and then the divergence of three genera happened during late Miocene (about 8 MaBP). Their main specialization occurred during the late Pliocene and Pleistocene (3.54-0.42 MaBP). The main cladogenetic events of the specialized schizothoracine fishes are mostly correlated with the geological tectonic events and intensive climate shift happened at 8, 3.6, 2.5 and 1.7 MaBP of the late Cenozoic. Molecular clock data do not support the hypothesis that the Qinghai-Tibetan Plateau uplifted to near present or even higher elevations during the Oligocene or Miocene, and neither in agreement with the view that the plateau uplifting reached only to an altitude of 2000 in during the late Pliocene (about 2.6 MaBP).
Resumo:
To investigate the genetic diversity between the populations of woolly flying squirrels (Eupetaurus) from the eastern and western extremes of the Himalayas, partial mitochondrial cytochrome b gene sequences (390-810bp) that were determined from the museum specimens were analyzed using maximum parsimony (MP) and maximum likelihood (ML) methods. The molecular data reveal that the two specimens that were collected in northwestern Yunnan (China) are members of the genus Eupetaurus. Reconstructed phylogenetic relationships show that the populations of Eupetaurus in the eastern and western extremes of the Himalayas are two distinct species with significant genetic differences (12%) and diverged about 10.8 million years ago. Eupetaurus is significantly different from Petaurista and Pteromys. The level of estimated pairwise-sequence divergence observed between Eupetaurus and Petaurista or Pteromys is greater than that observed between Eupetaurus and Trogopterus, Belomys, Glaucomys, or Hylopetes. Considering the divergence time of the two Eupetaurus groups, the glaciations and the uplift of the Himalayas and Qinghai-Tibet plateau during the Pliocene-Pleistocene period might be the major factors affecting the present distribution of Eupetaurus along the Himalayas. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
从9种科鱼类的福尔马林标本中获得了333bp的细胞色素b基因片段的序列。这9个种分别代表科鱼类的8个属。333bp的DNA序列经MUST软件排序后,有101个变异位点,其中有39个信息位点。序列在成对物种间的距离为8~48。平均遗传距离为24%~144%。简约分析产生了最大简约系统树,其步长是162(CI=0735,RI=0494)。在该系统树上,Bagarius是最原始的属,并与所有其他的物种形成姊妹群。其余8个属形成一个单系类群并分为二个姊妹群。尽管在形态上具有13个离征,但在分子系统树上
Resumo:
The mitochondrial 16S ribosomal RNA (rRNA) gene sequences from 93 cyprinid fishes were examined to reconstruct the phylogenetic relationships within the diverse and economically important subfamily Cyprininae. Within the subfamily a biased nucleotide composition (A > T, C > G) was observed in the loop regions of the gene, and in stem regions apparent selective pressures of base pairing showed a bias in favor of G over C and T over A. The bias may be associated with transition-transversion bias. Rates of nucleotide substitution were lower in stems than in loops. Analysis of compensatory substitutions across these taxa demonstrates 68% covariation in the gene and a logical weighting factor to account for dependence in mutations for phylogenetic inference should be 0.66. Comparisons of varied stem-loop weighting schemes indicate that the down-weightings for stem regions could improve the phylogenetic analysis and the degree of non-independence of stem substitutions was not as important as expected. Bayesian inference under four models of nucleotide substitution indicated that likelihood-based phylogenetic analyses were more effective in improving the phylogenetic performance than was weighted parsimony analysis. In Bayesian analyses, the resolution of phylogenies under the 16-state models for paired regions, incorporating GTR + G + I models for unpaired regions was better than those under other models. The subfamily Cyprininae was resolved as a monophyletic group, as well as tribe Labein and several genera. However, the monophyly of the currently recognized tribes, such as Schizothoracin, Barbin, Cyprinion + Onychostoma lineages, and some genera was rejected. Furthermore, comparisons of the parsimony and Bayesian analyses and results of variable length bootstrap analysis indicates that the mitochondrial 16S rRNA gene should contain important character variation to recover well-supported phylogeny of cyprinid taxa whose divergences occurred within the recent 8 MY, but could not provide resolution power for deep phylogenies spanning 10-19 MYA. (c) 2008 Published by Elsevier Inc.
Resumo:
The genus Sarcocheilichthys is a group of small cyprinid fishes comprising 10 species/sub-species widely distributed in East Asia, which represents a valuable model for understanding the speciation of freshwater fishes in East Asia. In the present study, the molecular phylogenetic relationship of the genus Sarcocheilichthys was investigated using a 1140 bp section of the mitochondrial cytochrome b gene. Two different tree-building methods, maximum parsimony (MP) and Bayesian methods, yielded trees with almost the same topology, yielding high bootstrap values or posterior probabilities. The results showed that the genus Sarcocheilichthys consists of two large clades, clades I and II. Clade I contains Sarcocheilichthys lacustris, Sarcocheilichthys sinensis and Sarcocheilichthys parvus, with S. parvus at a basal position. In clade II, Sarcocheilichthys variegatus microoculus is at a basal position; samples of the widespread species, Sarcocheilichthys nigripinnis, form a large subclade containing another valid species Sarcocheilichthys czerskii. Sarcocheilichthys kiangsiensis is retained at an intermediate position. Since S. czerskii is a valid species in the S. nigripinnis clade, remaining samples of S. nigripinnis form a paraphyly. This speciation process is attributed to geographical isolation and special environmental conditions experienced by S. czerskii and stable environments experienced by the other S. nigripinnis populations. This type of speciation process was suggested to be very common. Samples of Sarcocheilichthys sinensis sinensis and Sarcocheilichthys sinensis fukiensis that did not form their own monophyletic groups suggest an early stage of speciation and support their sub-species status. Molecular clock analysis indicates that the two major lineages of the genus Sarcocheilichthys, clades I and II diverged c. 8.89 million years ago (mya). Sarcocheilichthys v. microoculus from Japan probably diverged 4.78 mya from the Chinese group. The northern-southern clades of S. nigripinnis began to diverge c. 2.12 mya, while one lineage of S. nigripinnis evolved into a new species, S. czerski, c. 0.34 mya. (C) 2008 The Authors Journal compilation (C) 2008 The Fisheries Society of the British Isles.
Resumo:
The phylogenetic relationships among the Ergasilidae genera are poorly understood. In this study, 14 species from four genera in the Ergasilidae including Sinergasilus, Ergasilus, Pseudergasilus, and Paraergasilus were collected in China, and their phylogenetic relationships were examined using neighbor-joining, maximum parsimony, maximum likelihood, and Bayesian inference methods based on partial sequences of 18S and 28S ribosomal deoxyribonucleic acid, respectively. All the analyses suggest that the Sinergasilus and Paraergasilus are both monophyletic, but the Ergasilus is polyphyletic rather than monophyletic. Considering the relationships among the four genera, the phylogenetic analyses and subsequent hypothesis tests all suggest that Pseudergasilus clustered with some Ergasilus species may have a closer relationship with Sinergasilus rather than with Paraergasilus. It is proposed that the Sinergasilus and the Pseudergasilus species might have evolved from Ergasilus species.
Resumo:
The phylogeny of Oedogoniales was investigated by using nuclear 18S rDNA sequences. Results showed that the genus Oedocladium, as a separated clade, was clustered within the clade of Oedogonium; whereas the genus Bulbochaete was in a comparatively divergent position to the other two genera. The relationship among the species of Oedogonium was discussed, focusing on ITS-2 phylogeny analyzed combining with some morphological characteristics. Our results showed that all the dioecious nannandrous taxa involved in this study were resolved into one clade, while all the monocious taxa were clustered into another clade as a sister group to the former. The report also suggests that the dioecious macrandrous taxa form a paraphyly and could be more basally situated than the dioecious nannandrous and the monoecious taxa by means of molecular phylogeny and morphotype investigations.
Resumo:
The family Cyprinidae is one of the largest fish families in the world, which is widely distributed in East Asian, with obvious difference in characteristic size among species. The phylogenetic analysis of cyprinid taxa based on the functionally important genes can help to understand the speciation and functional divergench of the Cyprinidae. The c-myc gene is an important gene regulating individual growth. In the present study, the sequence variations of the cyprinid c-myc gene and their phylogenetic significance were analyzed. The 41 complete sequences of the c-myc gene were obtained from cyprinids and outgroups through PCR amplification and clone. The coding DNA sequences of the c-myc gene were used to infer molecular phylogenetic relationships within the Cyprinidae. Myxocyprinus asiaticus (Catostomidae), Misgurnus anguillicaudatus (Cobitidae) and Hemimyzon sinensis (Homalopteridae) were assigned to the outgroup taxa. Phylogenetic analyses using maximum parsimony (MP), maximum likelihood (ML), and Bayesian retrieved similar topology. Within the Cyprinidae, Leuciscini and Barbini formed the monophyletic lineage respectively with high nodal supports. Leuciscini comprises Xeno-cyprinae, Cultrinae, East Asian species of Leuciscinae and Danioninae, Gobioninae and Acheilognathinae, and Barbini contains Schizothoracinae, Barbinae, Cyprininae and Labeoninae. Danio rerio, D. myersi and Rasbora trilineata were supposed to separate from Leuciscinae and Barbini and to form another lineage, The positions of some Danioninae species were still unresolved. Analyses of both amino acid variation with parsimony information and two high variation regions indicated that there is no correlation between variations of single amino acid or high variation regions and characteristic size of cyprinids. In,addition, the species with smaller size were usually found to be basal within clades in the tree, which might be the results of the adaptation to the primitive ecology and survival pressure.
Resumo:
The phylogenetic relationship of 5 genera, i.e. Diplozoon Nordmann, 1832, Paradiplozoon Achmerov, 1974, Inustiatus Khotenovsky, 1978, Sindiplozoon Khotenovsky, 1981, and Eudiplozoon Khotenovsky, 1985 in the subfamily Diplozoinae Palombi, 1949 (Monogenea, Polyopisthocotylea) was inferred from rDNA ITS-2 region using neighbour-joining (NJ), maximum likelihood (ML) and Bayesian methods. The phylogenetic trees produced by using NJ, ML and Bayesian methods exhibit essentially the same topology. Surprisingly, freshwater species of Paradiplozoon from Europe clustered together with species of Diplozoon, but separated from Chinese Paradiplozoon species. The results of molecular phylogeny and lower level of divergence (4(.)1-15(.)7%) in ITS-2 rDNA among Paradiplozoon from Europe and Diplozoon and, on the other hand, high level of divergence (45(.)3-53(.)7%) among Paradiplozoon species from Europe and China might indicate the non-monophyletic origin of the genus Paradiplozoon. Also, the generic status of European Paradiplozoon needs to be revised. The species of Paradiplozoon in China is a basal group in Diplozoinae as revealed by NJ and Bayesian methods, and Sindiplozoon appears to be closely related to European Paradiplozoon and Diplozoon. with their relationship to Eudiplozoon and Inustiatus being unresolved.
Resumo:
We recovered the phylogenetic relationships among 23 species and subspecies of the highly specialized grade schizothoracine fishes distributing at 36 geographical sites in the Tibetan Plateau and its Surrounding regions by analyzing sequences of cytochrome b genes. Furthermore, we estimated the possible divergent times among lineages based on a historical geological isolation event in the Tibetan Plateau. The molecular data revealed that the highly specialized grade schizothoracine fishes were not a monophyletic group, but were the same as genera Gymnocypris and Schizogypsis. Our results indicated that the molecular phylogenetic relationships apparently reflected their geographical and historical associations with drainages, namely species from the same and adjacent drainages clustered together and had close relationships. The divergence times of different lineages were well consistent with the rapid uplift phases of the Tibetan Plateau in the late Cenozoic, suggesting that the origin and evolution of schizothoracine fishes were strongly influenced by environment changes resulting from the upheaval of the Tibetan Plateau.