934 resultados para Sewage disposal in the ground
Resumo:
Ground Cover Monitoring in the Fitzroy Basin.
Resumo:
This thesis is a qualitative study that examines how participating staff from Thai based non-governmental organisations interpret and construct the notion of human trafficking; and how this impacts prevention methods. The research examined the impact of different socio-cultural, political and religious ideologies on anti-trafficking prevention and programme implementation. Findings highlighted that while a 'raid and rescue' approach to human trafficking was widely recognised by donors and the media; it was not suitable or complementary to sustainable and community focused anti-trafficking models. Rather, a holistic approach that considers contextual factors and inter-agency collaboration is essential for effective anti-trafficking prevention strategies.
Resumo:
A distinctive feature of the Nhecolandia, a sub-region of the Pantanal wetland in Brazil, is the presence of both saline and freshwater lakes. Saline lakes used to be attributed to a past and phase during the Pleistocene. However, recent studies have shown that saline and fresh water lakes are linked by a continuous water table, indicating that saline water could come from a contemporary concentration process. This concentration process could also be responsible for the large chemical variability of the waters observed in the area. A regional water sampling has been conducted in surface and sub-surface water and the water table, and the results of the geochemical and statistical analysis are presented. Based on sodium contents, the concentration shows a 1: 4443 ratio. All the samples belong to the same chemical family and evolve in a sodic alkaline manner. Calcite or magnesian calcite precipitates very early in the process of concentration, probably followed by the precipitation of magnesian silicates. The most concentrated solutions remain under-saturated with respect to the sodium carbonate salt, even if this equilibrium is likely reached around the saline lakes. Apparently, significant amounts of sulfate and chloride are lost simultaneously from the solutions, and this cannot be explained solely by evaporative concentration. This could be attributed to the sorption on reduced minerals in a green sub-surface horizon in the "cordilhieira" areas. In the saline lakes, low potassium, phosphate, magnesium, and sulfate are attributed to algal blooms. Under the influence of evaporation, the concentration of solutions and associated chemical precipitations are identified as the main factors responsible for the geochemical variability in this environment (about 92 % of the variance). Therefore, the saline lakes of Nhecolandia have to be managed as landscape units in equilibrium with the present water flows and not inherited from a past and phase. In order to elaborate hydrochemical tracers for a quantitative estimation of water flows, three points have to be investigated more precisely: (1) the quantification of magnesium involved in the Mg-calcite precipitation; (2) the identification of the precise stoichiometry of the Mg-silicate; and (3) the verification of the loss of chloride and sulfate by sorption onto labile iron minerals.
Resumo:
Artificial Neural Networks (ANNs) have been found to be a robust tool to model many non-linear hydrological processes. The present study aims at evaluating the performance of ANN in simulating and predicting ground water levels in the uplands of a tropical coastal riparian wetland. The study involves comparison of two network architectures, Feed Forward Neural Network (FFNN) and Recurrent Neural Network (RNN) trained under five algorithms namely Levenberg Marquardt algorithm, Resilient Back propagation algorithm, BFGS Quasi Newton algorithm, Scaled Conjugate Gradient algorithm, and Fletcher Reeves Conjugate Gradient algorithm by simulating the water levels in a well in the study area. The study is analyzed in two cases-one with four inputs to the networks and two with eight inputs to the networks. The two networks-five algorithms in both the cases are compared to determine the best performing combination that could simulate and predict the process satisfactorily. Ad Hoc (Trial and Error) method is followed in optimizing network structure in all cases. On the whole, it is noticed from the results that the Artificial Neural Networks have simulated and predicted the water levels in the well with fair accuracy. This is evident from low values of Normalized Root Mean Square Error and Relative Root Mean Square Error and high values of Nash-Sutcliffe Efficiency Index and Correlation Coefficient (which are taken as the performance measures to calibrate the networks) calculated after the analysis. On comparison of ground water levels predicted with those at the observation well, FFNN trained with Fletcher Reeves Conjugate Gradient algorithm taken four inputs has outperformed all other combinations.
Resumo:
Bentonite clay is identified as potential buffer in deep geological repositories (DGR) that store high level radioactive wastes (HLW) as the expansive clay satisfies the expected mechanical and physicochemical functions of the buffer material. In the deep geological disposal of HLW, iodine-129 is one of the significant nuclides, attributable to its long half-life (half life 1⁄4 1:7 × 107 years). However, the negative charge on the basal surface of bentonite particles precludes retention of iodide anions. To render the bentonite effective in retaining hazardous iodide species in DGR, improvement of the anion retention capacity of bentonite becomes imperative. The iodide retention capac-ity of bentonite is improved by admixing 10 and 20% Ag-kaolinite (Ag-K) with bentonite (B) on a dry mass basis. The present study produced Ag-kaolinite by heating silver nitrate-kaolinite mixes at 400°C. Marginal release of iodide retained by Ag-kaolinite occurred under extreme acidic (pH 1⁄4 2:5) and alkaline (pH 1⁄4 12:5) conditions. The swell pressure and iodide etention results of the B-Ag-K specimens bring out that mixing Ag-K with bentonite does not chemically modify the expansive clay; the mixing is physical in nature and Ag-K presence only contributes to iodide retention of the admixture. DOI: 10.1061/(ASCE)HZ.2153-5515.0000121. © 2012 American Society of Civil Engineers.
Resumo:
The water problems confronting Hallandale are similar to those of other coastal cities of southeastern Florida which are undergoing rapid growth with tremendous increase in water demand. The highly permeable Biscayne aquifer underlying the Hallandale area is an excellent source of water; however, the permeable nature of the Biscayne aquifer would permit the intrusion of sea water, if fresh water levels were lowered excessively, as well as the infiltration of urban or industrial contaminants, from land surfaces and surface water bodies. This study is to provide the hydrologic data necessary for proper water resource development and planning in the Hallandale area. (40 page document)
Resumo:
The scope of the investigation involved the drilling of test holes and the detailed inventorying of existing wells in order to define the location, depth, potential yield, and chemical quality of the water contained in the shallow aquifer that might be used for the development of a central water-supply system. The field work and collection of data for the investigation covered the period 1961 through 1963. Much of the data collected for the report on the ground-water resources of Collier County (McCoy, 1962) is incorporated into this report. (Document has 36 pages.)
Resumo:
In December 1956 the U. S. Geological Survey, in cooperation with the Florida Geological Survey and the Board of County Commissioners of Pinellas County, collected waterlevel and chloride content of water in 94 wells in Pinellas County. First sampled in 1947, resampling and reanalyzing the water from these wells was used to determine the change in the chloride content of the ground water from 1947 to 1956. The chloride content of ground water is generally a reliable indication of the contamination of ground water by sea water, as 90 percent of the dissolved solids of sea water are chloride salts. (PDF contains 15 pages.)
Resumo:
No abstract.
Resumo:
In situ ecological assessment of the breeding grounds of palaemonid prawns was conducted in some selected locations around Ondo state coastal area between the months of April and September. Data obtained were subjected to both descriptive and inferential statistics. Three species of Palaemonid prawns were identified in four different locations within the study area with relative abundance ratio of 4:3:1. Macrobrachium macrobrachion, Nematopalaemon hastatus and Palaemon maculatus respectively. Sex ratio of 1 male to 5 females for M. macrobrachion, and 1 male to 2 females for N. hastatus and P. maculatus were observed with result showing significant relationships (P < 0.05) in distribution patterns across collection sites. Population distribution within the water column showed that palaemons are sub-lithoral prawns inhabiting maximum mean depth of 0.67m ± 0.025. Surface macro-phytes such as Eichhornia crassipies, Paspalum vaginatum, and Pistia stratiotes are common providing hiding spots for the prawn at the breeding ground. The mean soil pH across the sites stands at 6.67± 0.399 with the soil textural class that range from silty-loam to silty-clay. Also, the water quality parameters of study areas suggest that captive culture and rearing of Palaemons may be feasible outside the breeding areas.