973 resultados para Sequential Quadratic Programming


Relevância:

20.00% 20.00%

Publicador:

Resumo:

When performances are evaluated they are very often presented in a sequential order. Previous research suggests that the sequential presentation of alternatives may induce systematic biases in the way performances are evaluated. Such a phenomenon has been scarcely studied in economics. Using a large dataset of performance evaluation in the Idol series (N=1522), this paper presents new evidence about the systematic biases in sequential evaluation of performances and the psychological phenomena at the origin of these biases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Learning to operate algebraically is a complex process that is dependent upon extending arithmetic knowledge to the more complex concepts of algebra. Current research has shown a gap between arithmetic and algebraic knowledge and suggests a pre-algebraic level as a step between the two knowledge types. This paper examines arithmetic and algebraic knowledge from a cognitive perspective in an effort to determine what constitutes a pre-algebraic level of understanding. Results of a longitudinal study designed to investigate students' readiness for algebra are presented. Thirty-three students in Grades 7, 8, and 9 participated. A model for the transition from arithmetic to pre-algebra to algebra is proposed and students' understanding of relevant knowledge is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The computation of compact and meaningful representations of high dimensional sensor data has recently been addressed through the development of Nonlinear Dimensional Reduction (NLDR) algorithms. The numerical implementation of spectral NLDR techniques typically leads to a symmetric eigenvalue problem that is solved by traditional batch eigensolution algorithms. The application of such algorithms in real-time systems necessitates the development of sequential algorithms that perform feature extraction online. This paper presents an efficient online NLDR scheme, Sequential-Isomap, based on incremental singular value decomposition (SVD) and the Isomap method. Example simulations demonstrate the validity and significant potential of this technique in real-time applications such as autonomous systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A randomized, double-blind, study was conducted to evaluate the safety, tolerability and immunogenicity of a live attenuated Japanese encephalitis chimeric virus vaccine (JE-CV) co-administered with live attenuated yellow fever (YF) vaccine (YF-17D strain; Stamaril(®), Sanofi Pasteur) or administered successively. Participants (n = 108) were randomized to receive: YF followed by JE-CV 30 days later, JE followed by YF 30 days later, or the co-administration of JE and YF followed or preceded by placebo 30 days later or earlier. Placebo was used in a double-dummy fashion to ensure masking. Neutralizing antibody titers against JE-CV, YF-17D and selected wild-type JE virus strains was determined using a 50% serum-dilution plaque reduction neutralization test. Seroconversion was defined as the appearance of a neutralizing antibody titer above the assay cut-off post-immunization when not present pre-injection at day 0, or a least a four-fold rise in neutralizing antibody titer measured before the pre-injection day 0 and later post vaccination samples. There were no serious adverse events. Most adverse events (AEs) after JE vaccination were mild to moderate in intensity, and similar to those reported following YF vaccination. Seroconversion to JE-CV was 100% and 91% in the JE/YF and YF/JE sequential vaccination groups, respectively, compared with 96% in the co-administration group. All participants seroconverted to YF vaccine and retained neutralizing titers above the assay cut-off at month six. Neutralizing antibodies against JE vaccine were detected in 82-100% of participants at month six. These results suggest that both vaccines may be successfully co-administered simultaneously or 30 days apart.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Similarity solutions for flow over an impermeable, non-linearly (quadratic) stretching sheet were studied recently by Raptis and Perdikis (Int. J. Non-linear Mech. 41 (2006) 527–529) using a stream function of the form ψ=αxf(η)+βx2g(η). A fundamental error in their problem formulation is pointed out. On correction, it is shown that similarity solutions do not exist for this choice of ψ

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tangible programming elements offer the dynamic and programmable properties of a computer without the complexity introduced by the keyboard, mouse and screen. This paper explores the extent to which programming skills are used by children during interactions with a set of tangible programming elements: the Electronic Blocks. An evaluation of the Electronic Blocks indicates that children become heavily engaged with the blocks, and learn simple programming with a minimum of adult support.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kernel-based learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information is contained in the so-called kernel matrix, a symmetric and positive semidefinite matrix that encodes the relative positions of all points. Specifying this matrix amounts to specifying the geometry of the embedding space and inducing a notion of similarity in the input space - classical model selection problems in machine learning. In this paper we show how the kernel matrix can be learned from data via semidefinite programming (SDP) techniques. When applied to a kernel matrix associated with both training and test data this gives a powerful transductive algorithm -using the labeled part of the data one can learn an embedding also for the unlabeled part. The similarity between test points is inferred from training points and their labels. Importantly, these learning problems are convex, so we obtain a method for learning both the model class and the function without local minima. Furthermore, this approach leads directly to a convex method for learning the 2-norm soft margin parameter in support vector machines, solving an important open problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kernel-based learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information is contained in the so-called kernel matrix, a symmetric and positive definite matrix that encodes the relative positions of all points. Specifying this matrix amounts to specifying the geometry of the embedding space and inducing a notion of similarity in the input space -- classical model selection problems in machine learning. In this paper we show how the kernel matrix can be learned from data via semi-definite programming (SDP) techniques. When applied to a kernel matrix associated with both training and test data this gives a powerful transductive algorithm -- using the labelled part of the data one can learn an embedding also for the unlabelled part. The similarity between test points is inferred from training points and their labels. Importantly, these learning problems are convex, so we obtain a method for learning both the model class and the function without local minima. Furthermore, this approach leads directly to a convex method to learn the 2-norm soft margin parameter in support vector machines, solving another important open problem. Finally, the novel approach presented in the paper is supported by positive empirical results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an algorithm called Optimistic Linear Programming (OLP) for learning to optimize average reward in an irreducible but otherwise unknown Markov decision process (MDP). OLP uses its experience so far to estimate the MDP. It chooses actions by optimistically maximizing estimated future rewards over a set of next-state transition probabilities that are close to the estimates, a computation that corresponds to solving linear programs. We show that the total expected reward obtained by OLP up to time T is within C(P) log T of the reward obtained by the optimal policy, where C(P) is an explicit, MDP-dependent constant. OLP is closely related to an algorithm proposed by Burnetas and Katehakis with four key differences: OLP is simpler, it does not require knowledge of the supports of transition probabilities, the proof of the regret bound is simpler, but our regret bound is a constant factor larger than the regret of their algorithm. OLP is also similar in flavor to an algorithm recently proposed by Auer and Ortner. But OLP is simpler and its regret bound has a better dependence on the size of the MDP.