965 resultados para Self-similar landmarks


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Symmetries have played an important role in a variety of problems in geology and geophysics. A large fraction of studies in mineralogy are devoted to the symmetry properties of crystals. In this paper, however, the emphasis will be on scale-invariant (fractal) symmetries. The earth’s topography is an example of both statistically self-similar and self-affine fractals. Landforms are also associated with drainage networks, which are statistical fractal trees. A universal feature of drainage networks and other growth networks is side branching. Deterministic space-filling networks with side-branching symmetries are illustrated. It is shown that naturally occurring drainage networks have symmetries similar to diffusion-limited aggregation clusters.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We summarize studies of earthquake fault models that give rise to slip complexities like those in natural earthquakes. For models of smooth faults between elastically deformable continua, it is critical that the friction laws involve a characteristic distance for slip weakening or evolution of surface state. That results in a finite nucleation size, or coherent slip patch size, h*. Models of smooth faults, using numerical cell size properly small compared to h*, show periodic response or complex and apparently chaotic histories of large events but have not been found to show small event complexity like the self-similar (power law) Gutenberg-Richter frequency-size statistics. This conclusion is supported in the present paper by fully inertial elastodynamic modeling of earthquake sequences. In contrast, some models of locally heterogeneous faults with quasi-independent fault segments, represented approximately by simulations with cell size larger than h* so that the model becomes "inherently discrete," do show small event complexity of the Gutenberg-Richter type. Models based on classical friction laws without a weakening length scale or for which the numerical procedure imposes an abrupt strength drop at the onset of slip have h* = 0 and hence always fall into the inherently discrete class. We suggest that the small-event complexity that some such models show will not survive regularization of the constitutive description, by inclusion of an appropriate length scale leading to a finite h*, and a corresponding reduction of numerical grid size.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We numerically investigate the effects of inhomogeneities in the energy spectrum of aperiodic semiconductor superlattices, focusing our attention on Thue-Morse and Fibonacci sequences. In the absence of disorder, the corresponding electronic spectra are self-similar. The presence of a certain degree of randomness, due to imperfections occurring during the growth processes, gives rise to a progressive loss of quantum coherence, smearing out the finer details of the energy spectra predicted for perfect aperiodic superlattices and spurring the onset of electron localization. However, depending on the degree of disorder introduced, a critical size for the system exists, below which peculiar transport properties, related to the pre-fractal nature of the energy spectrum, may be measured.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nowadays, the analysis of the X-ray spectra of magnetically powered neutron stars or magnetars is one of the most valuable tools to gain insight into the physical processes occurring in their interiors and magnetospheres. In particular, the magnetospheric plasma leaves a strong imprint on the observed X-ray spectrum by means of Compton up-scattering of the thermal radiation coming from the star surface. Motivated by the increased quality of the observational data, much theoretical work has been devoted to develop Monte Carlo (MC) codes that incorporate the effects of resonant Compton scattering (RCS) in the modeling of radiative transfer of photons through the magnetosphere. The two key ingredients in this simulations are the kinetic plasma properties and the magnetic field (MF) configuration. The MF geometry is expected to be complex, but up to now only mathematically simple solutions (self-similar solutions) have been employed. In this work, we discuss the effects of new, more realistic, MF geometries on synthetic spectra. We use new force-free solutions [14] in a previously developed MC code [9] to assess the influence of MF geometry on the emerging spectra. Our main result is that the shape of the final spectrum is mostly sensitive to uncertain parameters of the magnetospheric plasma, but the MF geometry plays an important role on the angle-dependence of the spectra.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we give an example of a nonlattice self-similar fractal string such that the set of real parts of their complex dimensions has an isolated point. This proves that, in general, the set of dimensions of fractality of a fractal string is not a perfect set.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper shows that the conjecture of Lapidus and Van Frankenhuysen on the set of dimensions of fractality associated with a nonlattice fractal string is true in the important special case of a generic nonlattice self-similar string, but in general is false. The proof and the counterexample of this have been given by virtue of a result on exponential polynomials P(z), with real frequencies linearly independent over the rationals, that establishes a bound for the number of gaps of RP, the closure of the set of the real projections of its zeros, and the reason for which these gaps are produced.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper it is shown that a conjecture of Lapidus and van Frankenhuysen of 2003 on the existence of a vertical line such that the density of the complex dimensions of nonlattice fractal strings with M scaling ratios off this line vanishes in the limit as M→∞, fails on the class of nonlattice self-similar fractal strings.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this work is to improve students’ learning by designing a teaching model that seeks to increase student motivation to acquire new knowledge. To design the model, the methodology is based on the study of the students’ opinion on several aspects we think importantly affect the quality of teaching (such as the overcrowded classrooms, time intended for the subject or type of classroom where classes are taught), and on our experience when performing several experimental activities in the classroom (for instance, peer reviews and oral presentations). Besides the feedback from the students, it is essential to rely on the experience and reflections of lecturers who have been teaching the subject several years. This way we could detect several key aspects that, in our opinion, must be considered when designing a teaching proposal: motivation, assessment, progressiveness and autonomy. As a result we have obtained a teaching model based on instructional design as well as on the principles of fractal geometry, in the sense that different levels of abstraction for the various training activities are presented and the activities are self-similar, that is, they are decomposed again and again. At each level, an activity decomposes into a lower level tasks and their corresponding evaluation. With this model the immediate feedback and the student motivation are encouraged. We are convinced that a greater motivation will suppose an increase in the student’s working time and in their performance. Although the study has been done on a subject, the results are fully generalizable to other subjects.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ocean Drilling Program Legs 170 and 205 offshore Costa Rica provide structural observations which support a new model for the geometry and deformation response to the seismic cycle of the frontal sedimentary prism and decollement. The model is based on drillcore, thin section, and electron microscope observations. The decollement damage zone is a few tens of meters in width, it develops mainly within the frontal prism. A clear cm-thick fault core is observed 1.6 km from the trench. The lower boundary of the fault core is coincident with the lithological boundary between the frontal prism and the hemipelagic and pelagic sediment of the Cocos plate. Breccia clast distributions in the upper portion of the decollement damage zone were studied through fractal analysis. This analysis shows that the fractal dimension changes with brecciated fragment size, implying that deformation was not accommodated by self-similar fracturing. A higher fractal dimensionality correlates with smaller particle size, which indicates that different or additional grain-size reduction processes operated during shearing. The co-existence of two distinct fracturing processes is also confirmed by microscopic analysis in which extension fracturing in the upper part of the damage zone farthest from the fault core is frequent, while both extension and shear fracturing occur approaching the fault core. The coexistence of extensional and shear fracturing seems to be best explained by fluid pressure variations in response to variations of the compressional regime during the seismic cycle. During the co-seismic event, sub-horizontal compression and fluid pressure increase, triggering shear fracturing and fluid expulsion. Fractures migrate upward with fluids, contributing to the asymmetric shape of the decollement, while slip propagates. In the inter-seismic interval the frontal prismrelaxes and fluid pressure drops. The frontal prismgoes into diffuse extension during the intervalwhen plate convergence is accommodated by creep along the ductile fault core. The fault core is typically a barrier to deformation, which is explained by its weak, but impermeable, nature. The localized development of a damage zone beneath the fault core is characterized by shear fracturing that appears as the result of local strengthening of the detachment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Based on a self-similar array model of single-walled carbon nanotubes (SWNTs), the pore structure of SWNT bundles is analyzed and compared with that obtained from the conventional triangular model and adsorption experimental results. In addition to the well known cylindrical endo-cavities and interstitial pores, two types of newly defined pores with diameters of 2-10 and 8-100 nm are proposed, inter-bundle pores and inter-array pores. In particular, the relationship between the packing configuration of SWNTs and their pore structures is systematically investigated. (c) 2005 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Edge blur is an important perceptual cue, but how does the visual system encode the degree of blur at edges? Blur could be measured by the width of the luminance gradient profile, peak ^ trough separation in the 2nd derivative profile, or the ratio of 1st-to-3rd derivative magnitudes. In template models, the system would store a set of templates of different sizes and find which one best fits the `signature' of the edge. The signature could be the luminance profile itself, or one of its spatial derivatives. I tested these possibilities in blur-matching experiments. In a 2AFC staircase procedure, observers adjusted the blur of Gaussian edges (30% contrast) to match the perceived blur of various non-Gaussian test edges. In experiment 1, test stimuli were mixtures of 2 Gaussian edges (eg 10 and 30 min of arc blur) at the same location, while in experiment 2, test stimuli were formed from a blurred edge sharpened to different extents by a compressive transformation. Predictions of the various models were tested against the blur-matching data, but only one model was strongly supported. This was the template model, in which the input signature is the 2nd derivative of the luminance profile, and the templates are applied to this signature at the zero-crossings. The templates are Gaussian derivative receptive fields that covary in width and length to form a self-similar set (ie same shape, different sizes). This naturally predicts that shorter edges should look sharper. As edge length gets shorter, responses of longer templates drop more than shorter ones, and so the response distribution shifts towards shorter (smaller) templates, signalling a sharper edge. The data confirmed this, including the scale-invariance implied by self-similarity, and a good fit was obtained from templates with a length-to-width ratio of about 1. The simultaneous analysis of edge blur and edge location may offer a new solution to the multiscale problem in edge detection.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Optical fiber materials exhibit a nonlinear response to strong electric fields, such as those of optical signals confined within the small fiber core. Fiber nonlinearity is an essential component in the design of the next generation of advanced optical communication systems, but its use is often avoided by engineers because of its intractability. The application of nonlinear technologies in fiber optics offers new opportunities for the design of photonic systems and devices. In this chapter, we make an overview of recent progress in mathematical theory and practical applications of temporal dissipative solitons and self-similar nonlinear structures in optical fiber systems. The design of all-optical high-speed signal processing devices, based on nonlinear dissipative structures, is discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

By means of extensive numerical modelling we have demonstrated the possibility of nonlinear pulse shaping in a mode-locked fibre laser using control of the intra-cavity propagation dynamics by adjustment of the normal net dispersion and integrated gain. Beside self-similar mode-locking, the existence of a novel type of pulse shaping regime that produces pulses with a triangular temporal intensity profile and a linear frequency chirp has been observed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent developments in nonlinear optics reveal an interesting class of pulses with a parabolic intensity profile in the energy-containing core and a linear frequency chirp that can propagate in a fiber with normal group-velocity dispersion. Parabolic pulses propagate in a stable selfsimilar manner, holding certain relations (scaling) between pulse power, width, and chirp parameter. In the additional presence of linear amplification, they enjoy the remarkable property of representing a common asymptotic state (or attractor) for arbitrary initial conditions. Analytically, self-similar (SS) parabolic pulses can be found as asymptotic, approximate solutions of the nonlinear Schr¨odinger equation (NLSE) with gain in the semi-classical (largeamplitude/small-dispersion) limit. By analogy with the well-known stable dynamics of solitary waves - solitons, these SS parabolic pulses have come to be known as similaritons. In practical fiber systems, inherent third-order dispersion (TOD) in the fiber always introduces a certain degree of asymmetry in the structure of the propagating pulse, eventually leading to pulse break-up. To date, there is no analytic theory of parabolic pulses under the action of TOD. Here, we develop aWKB perturbation analysis that describes the effect of weak TOD on the parabolic pulse solution of the NLSE in a fiber gain medium. The induced perturbation in phase and amplitude can be found to any order. The theoretical model predicts with sufficient accuracy the pulse structural changes induced by TOD, which are observed through direct numerical NLSE simulations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We propose a new concept of a fiber laser architecture supporting self-similar pulse evolution in the amplifier and nonlinear spectral pulse compression in the passive fiber. The latter process allows for transform-limited picosecond pulse generation, and improves the laser’s power efficiency by preventing strong spectral filtering from being highly dissipative. Aside from laser technology, the proposed scheme opens new possibilities for studying nonlinear dynamical processes. As an example, we demonstrate a clear period-doubling route to chaos in such a nonlinear laser system.