916 resultados para Secondary-structure stability
Resumo:
Transcription regulation and transcript stability of a light-repressed transcript, lrtA, from the cyanobacterium Synechococcus sp. PCC 7002 were studied using ribonuclease protection assays. The transcript for lrtA was not detected in continuously illuminated cells, yet transcript levels increased when cells were placed in the dark. A lag of 20 to 30 min was seen in the accumulation of this transcript after the cells were placed in the dark. Transcript synthesis continued in the dark for 3 h and the transcript levels remained elevated for at least 7 h. The addition of 10 μm rifampicin to illuminated cells before dark adaptation inhibited the transcription of lrtA in the dark. Upon the addition of rifampicin to 3-h dark-adapted cells, lrtA transcript levels remained constant for 30 min and persisted for 3 h. A 3-h half-life was estimated in the dark, whereas a 4-min half-life was observed in the light. Extensive secondary structure was predicted for this transcript within the 5′ untranslated region, which is also present in the 5′ untranslated region of lrtA from a different cyanobacterium, Synechocystis sp. PCC 6803. Evidence suggests that lrtA transcript stability is not the result of differences in ribonuclease activity from dark to light. Small amounts of lrtA transcript were detected in illuminated cells upon the addition of 25 μg mL−1 chloramphenicol. The addition of chloramphenicol to dark-adapted cells before illumination allowed detection of the lrtA transcript for longer times in the light relative to controls without chloramphenicol. These results suggest that lrtA mRNA processing in the light is different from that in the dark and that protein synthesis is required for light repression of the lrtA transcript.
Resumo:
Using an in vitro selection approach, we have isolated oligonucleotides that can bind to a DNA hairpin structure. Complex formation of these oligonucleotides with the target hairpin involves some type of triple-stranded structure with noncanonical interaction, as indicated by bandshift assays and footprinting studies. The selected oligomers can block restriction endonuclease cleavage of the target hairpin in a sequence-specific manner. We demonstrate that in vitro selection can extend the antisense approach to functional targeting of secondary structure motifs. This could provide a basis for interfering with regulatory processes mediated by a variety of nucleic acid structures.
Resumo:
Recent developments in multidimensional heteronuclear NMR spectroscopy and large-scale synthesis of uniformly 13C- and 15N-labeled oligonucleotides have greatly improved the prospects for determination of the solution structure of RNA. However, there are circumstances in which it may be advantageous to label only a segment of the entire RNA chain. For example, in a larger RNA molecule the structural question of interest may reside in a localized domain. Labeling only the corresponding nucleotides simplifies the spectrum and resonance assignments because one can filter proton spectra for coupling to 13C and 15N. Another example is in resolving alternative secondary structure models that are indistinguishable in imino proton connectivities. Here we report a general method for enzymatic synthesis of quantities of segmentally labeled RNA molecules required for NMR spectroscopy. We use the method to distinguish definitively two competing secondary structure models for the 5' half of Caenorhabditis elegans spliced leader RNA by comparison of the two-dimensional [15N] 1H heteronuclear multiple quantum correlation spectrum of the uniformly labeled sample with that of a segmentally labeled sample. The method requires relatively small samples; solutions in the 200-300 microM concentration range, with a total of 30 nmol or approximately 40 micrograms of RNA in approximately 150 microliters, give strong NMR signals in a short accumulation time. The method can be adapted to label an internal segment of a larger RNA chain for study of localized structural problems. This definitive approach provides an alternative to the more common enzymatic and chemical footprinting methods for determination of RNA secondary structure.
Resumo:
Structurally neighboring residues are categorized according to their separation in the primary sequence as proximal (1-4 positions apart) and otherwise distal, which in turn is divided into near (5-20 positions), far (21-50 positions), very far ( > 50 positions), and interchain (from different chains of the same structure). These categories describe the linear distance histogram (LDH) for three-dimensional neighboring residue types. Among the main results are the following: (i) nearest-neighbor hydrophobic residues tend to be increasingly distally separated in the linear sequence, thus most often connecting distinct secondary structure units. (ii) The LDHs of oppositely charged nearest-neighbors emphasize proximal positions with a subsidiary maximum for very far positions. (iii) Cysteine-cysteine structural interactions rarely involve proximal positions. (iv) The greatest numbers of interchain specific nearest-neighbors in protein structures are composed of oppositely charged residues. (v) The largest fraction of side-chain neighboring residues from beta-strands involves near positions, emphasizing associations between consecutive strands. (vi) Exposed residue pairs are predominantly located in proximal linear positions, while buried residue pairs principally correspond to far or very far distal positions. The results are principally invariant to protein sizes, amino acid usages, linear distance normalizations, and over- and underrepresentations among nearest-neighbor types. Interpretations and hypotheses concerning the LDHs, particularly those of hydrophobic and charged pairings, are discussed with respect to protein stability and functionality. The pronounced occurrence of oppositely charged interchain contacts is consistent with many observations on protein complexes where multichain stabilization is facilitated by electrostatic interactions.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-05
Resumo:
The structure of a novel plant defensin isolated from the flowers of Petunia hybrida has been determined by H-1 NMR spectroscopy. P. hybrida defensin 1 (PhD1) is a basic, cysteine-rich, antifungal protein of 47 residues and is the first example of a new subclass of plant defensins with five disulfide bonds whose structure has been determined. PhD1 has the fold of the cysteine-stabilized alphabeta motif, consisting of an alpha-helix and a triple-stranded antiparallel beta-sheet, except that it contains a fifth disulfide bond from the first loop to the alpha-helix. The additional disulfide bond is accommodated in PhD1 without any alteration of its tertiary structure with respect to other plant defensins. Comparison of its structure with those of classic, four-disulfide defensins has allowed us to identify a previously unrecognized hydrogen bond network that is integral to structure stabilization in the family.
Resumo:
DNA Microarray is a powerful tool to measure the level of a mixed population of nucleic acids at one time, which has great impact in many aspects of life sciences research. In order to distinguish nucleic acids with very similar composition by hybridization, it is necessary to design microarray probes with high specificities and sensitivities. Highly specific probes correspond to probes having unique DNA sequences; whereas highly sensitive probes correspond to those with melting temperature within a desired range and having no secondary structure. The selection of these probes from a set of functional DNA sequences (exons) constitutes a computationally expensive discrete non-linear search problem. We delegate the search task to a simple yet effective Evolution Strategy algorithm. The computational efficiency is also greatly improved by making use of an available bioinformatics tool.
Resumo:
Short peptides corresponding to two to four a-helical turns of proteins are not thermodynamically stable helices in water. Unstructured octapeptide Ac-His1*-Ala2-Ala3-His4*-His5*-Glu6-Leu7-His8*-NH2 (1) reacts with two [Pd ((NH2)-N-15(CH2)(2) (NH2)-N-15)(NO3)(2)] in water to form a kinetically stable intermediate, [{Pden}(2)-{(1,4)(5,8)-peptide}](2), in which two 19-membered metallocyclic rings stabilize two peptide turns. Slow subsequent folding to a thermodynamically more stable two-turn a-helix drives the equilibrium to [{Pden}(2)-{(1,5)(4,8)-peptide}] (3), featuring two 22-membered rings. This transformation from unstructured peptide via turns to an a-helix suggests that metal clips might be useful probes for investigating peptide folding.
Resumo:
Eukaryotic gene expression, reflected in the amount of steady-state mRNA, is regulated at the post-transcriptional level. The 5'-untranslated regions (5'-UTRs) of some transcripts contain cis-acting elements, including upstream open reading frames (uORFs), that have been identified as being fundamental in modulating translation efficiency and mRNA stability. Previously, we demonstrated that uORFs present in the 5'-UTR of cystic fibrosis transmembrane conductance regular (CFTR) transcripts expressed in the heart were able to modulate translation efficiency of the main CFTR ORF. Here, we show that the same 5'-UTR elements are associated with the differential stability of the 5'-UTR compared to the main coding region of CFTR transcripts. Furthermore, these post-transcriptional mechanisms are important factors governing regulated CFTR expression in the heart, in response to developmental and pathophysiological stimuli. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
We discuss recent progress towards the establishment of important structure-property-function relationships in eumelanins-key functional bio-macromolecular systems responsible for photoprotection and immune response in humans, and implicated in the development of melanoma skin cancer. We focus on the link between eumelanin's secondary structure and optical properties such as broad band UV-visible absorption and strong non-radiative relaxation; both key features of the photo-protective function. We emphasise the insights gained through a holistic approach combining optical spectroscopy with first principles quantum chemical calculations, and advance the hypothesis that the robust functionality characteristic of eumelanin is related to extreme chemical and structural disorder at the secondary level. This inherent disorder is a low cost natural resource, and it is interesting to speculate as to whether it may play a role in other functional bio-macromolecular systems.
Resumo:
The caseins (alpha(s1), alpha(s2), beta, and kappa) are phosphoproteins present in bovine milk that have been studied for over a century and whose structures remain obscure. Here we describe the chemical synthesis and structure elucidation of the N-terminal segment (1-44) of bovine K-casein, the protein which maintains the micellar structure of the caseins. K-Casein (1-44) was synthesised by highly optimised Boc solid-phase peptide chemistry and characterised by mass spectrometry. Structure elucidation was carried out by circular dichroism and nuclear magnetic resonance spectroscopy. CD analysis demonstrated that the segment was ill defined in aqueous medium but in 30% trifluoroethanol it exhibited considerable helical structure. Further, NMR analysis showed the presence of a helical segment containing 26 residues which extends from Pro(8) to Arg(34). This is the first report which demonstrates extensive secondary structure within the casein class of proteins. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
Background: Designing novel proteins with site-directed recombination has enormous prospects. By locating effective recombination sites for swapping sequence parts, the probability that hybrid sequences have the desired properties is increased dramatically. The prohibitive requirements for applying current tools led us to investigate machine learning to assist in finding useful recombination sites from amino acid sequence alone. Results: We present STAR, Site Targeted Amino acid Recombination predictor, which produces a score indicating the structural disruption caused by recombination, for each position in an amino acid sequence. Example predictions contrasted with those of alternative tools, illustrate STAR'S utility to assist in determining useful recombination sites. Overall, the correlation coefficient between the output of the experimentally validated protein design algorithm SCHEMA and the prediction of STAR is very high (0.89). Conclusion: STAR allows the user to explore useful recombination sites in amino acid sequences with unknown structure and unknown evolutionary origin. The predictor service is available from http://pprowler.itee.uq.edu.au/star.
Resumo:
Plant resistance proteins (R proteins) recognize corresponding pathogen avirulence (Avr) proteins either indirectly through detection of changes in their host protein targets or through direct R-Avr protein interaction. Although indirect recognition imposes selection against Avr effector function, pathogen effector molecules recognized through direct interaction may overcome resistance through sequence diversification rather than loss of function. Here we show that the flax rust fungus AvrLS67 genes, whose products are recognized by the L5, L6, and L7 R proteins of flax, are highly diverse, with 12 sequence variants identified from six rust strains. Seven AvrL567 variants derived from Avr alleles induce necrotic responses when expressed in flax plants containing corresponding resistance genes (R genes), whereas five variants from avr alleles do not. Differences in recognition specificity between AvA567 variants and evidence for diversifying selection acting on these genes suggest they have been involved in a gene-specific arms race with the corresponding flax R genes. Yeast two-hybrid assays indicate that recognition is based on direct R-Avr protein interaction and recapitulate the interaction specificity observed in planta. Biochemical analysis of Escherichia coli-produced AvrL567 proteins shows that variants that escape recognition nevertheless maintain a conserved structure and stability, suggesting that the amino acid sequence differences directly affect the R-Avr protein interaction. We suggest that direct recognition associated with high genetic diversity at corresponding R and Avr gene loci represents an alternative outcome of plant-pathogen coevolution to indirect recognition associated with simple balanced polymorphisms for functional and nonfunctional R and Avr genes.
Resumo:
Receptor activity modifying proteins (RAMPs) are a family of single-pass transmembrane proteins that dimerize with G-protein-coupled receptors. They may alter the ligand recognition properties of the receptors (particularly for the calcitonin receptor-like receptor, CLR). Very little structural information is available about RAMPs. Here, an ab initio model has been generated for the extracellular domain of RAMP1. The disulfide bond arrangement (Cys 27-Cys82, Cys40-Cys72, and Cys 57-Cys104) was determined by site-directed mutagenesis. The secondary structure (a-helices from residues 29-51, 60-80, and 87-100) was established from a consensus of predictive routines. Using these constraints, an assemblage of 25,000 structures was constructed and these were ranked using an all-atom statistical potential. The best 1000 conformations were energy minimized. The lowest scoring model was refined by molecular dynamics simulation. To validate our strategy, the same methods were applied to three proteins of known structure; PDB:1HP8, PDB:1V54 chain H (residues 21-85), and PDB:1T0P. When compared to the crystal structures, the models had root mean-square deviations of 3.8 Å, 4.1 Å, and 4.0 Å, respectively. The model of RAMP1 suggested that Phe93, Tyr 100, and Phe101 form a binding interface for CLR, whereas Trp74 and Phe92 may interact with ligands that bind to the CLR/RAMP1 heterodimer. © 2006 by the Biophysical Society.
Resumo:
Responsive hydrophobically associating polymers can in many ways be considered to be analogous to proteins in their ability to form compact molecules with a defined secondary structure, and hence, functionality. These molecules are characterized by the presence of alternating charged and hydrophobic groups. The balance between charge repulsion and hydrophobic interactions is sensitive to environmental pH and therefore changes in pH produce controllable conformational changes. The change from a charged extended chain to a collapsed uncharged coil structure is sometimes referred to as hypercoiling behaviour and enables the polymer to act as a simple switch between an 'on' and 'off' state. The purpose of this review is to illustrate the structure and behaviour of polymers that exhibit hypercoiling behaviour and to highlight their potential pharmaceutical applications, which in terms of drug delivery is likely to be related to their surface behaviour and solubilizing activity. © 2001 Elsevier Science B.V. All rights reserved.