834 resultados para Science, Technology, Engineering and Math fields (STEM)
Resumo:
Enzyme technology is widely regarded as an exciting new technology possessing great opportunities for commercial interests and is one of a small group of key technologies singled out by the Science Research Councils during the 1960's as worthy of special support. In this thesis I outline the basic characteristics of this technology analysing the nature of the Government's policy towards it. The approach I have chosen requires an in depth analysis of the innovation process for enzymes which forms the basis for a model. This model is then used to focus on aspects of the UK science policy towards innovation in enzyme technology, assessing its impacts, and appraising the usefulness of this approach for future policy initiatives.
Resumo:
Report published in the Proceedings of the National Conference on "Education and Research in the Information Society", Plovdiv, May, 2014
Resumo:
This research examines evolving issues in applied computer science and applies economic and business analyses as well. There are two main areas. The first is internetwork communications as embodied by the Internet. The goal of the research is to devise an efficient pricing, prioritization, and incentivization plan that could be realistically implemented on the existing infrastructure. Criteria include practical and economic efficiency, and proper incentives for both users and providers. Background information on the evolution and functional operation of the Internet is given, and relevant literature is surveyed and analyzed. Economic analysis is performed on the incentive implications of the current pricing structure and organization. The problems are identified, and minimally disruptive solutions are proposed for all levels of implementation to the lowest level protocol. Practical issues are considered and performance analyses are done. The second area of research is mass market software engineering, and how this differs from classical software engineering. Software life-cycle revenues are analyzed and software pricing and timing implications are derived. A profit maximizing methodology is developed to select or defer the development of software features for inclusion in a given release. An iterative model of the stages of the software development process is developed, taking into account new communications capabilities as well as profitability. ^
Resumo:
Mode of access: Internet.
Resumo:
Organismal development, homeostasis, and pathology are rooted in inherently probabilistic events. From gene expression to cellular differentiation, rates and likelihoods shape the form and function of biology. Processes ranging from growth to cancer homeostasis to reprogramming of stem cells all require transitions between distinct phenotypic states, and these occur at defined rates. Therefore, measuring the fidelity and dynamics with which such transitions occur is central to understanding natural biological phenomena and is critical for therapeutic interventions.
While these processes may produce robust population-level behaviors, decisions are made by individual cells. In certain circumstances, these minuscule computing units effectively roll dice to determine their fate. And while the 'omics' era has provided vast amounts of data on what these populations are doing en masse, the behaviors of the underlying units of these processes get washed out in averages.
Therefore, in order to understand the behavior of a sample of cells, it is critical to reveal how its underlying components, or mixture of cells in distinct states, each contribute to the overall phenotype. As such, we must first define what states exist in the population, determine what controls the stability of these states, and measure in high dimensionality the dynamics with which these cells transition between states.
To address a specific example of this general problem, we investigate the heterogeneity and dynamics of mouse embryonic stem cells (mESCs). While a number of reports have identified particular genes in ES cells that switch between 'high' and 'low' metastable expression states in culture, it remains unclear how levels of many of these regulators combine to form states in transcriptional space. Using a method called single molecule mRNA fluorescent in situ hybridization (smFISH), we quantitatively measure and fit distributions of core pluripotency regulators in single cells, identifying a wide range of variabilities between genes, but each explained by a simple model of bursty transcription. From this data, we also observed that strongly bimodal genes appear to be co-expressed, effectively limiting the occupancy of transcriptional space to two primary states across genes studied here. However, these states also appear punctuated by the conditional expression of the most highly variable genes, potentially defining smaller substates of pluripotency.
Having defined the transcriptional states, we next asked what might control their stability or persistence. Surprisingly, we found that DNA methylation, a mark normally associated with irreversible developmental progression, was itself differentially regulated between these two primary states. Furthermore, both acute or chronic inhibition of DNA methyltransferase activity led to reduced heterogeneity among the population, suggesting that metastability can be modulated by this strong epigenetic mark.
Finally, because understanding the dynamics of state transitions is fundamental to a variety of biological problems, we sought to develop a high-throughput method for the identification of cellular trajectories without the need for cell-line engineering. We achieved this by combining cell-lineage information gathered from time-lapse microscopy with endpoint smFISH for measurements of final expression states. Applying a simple mathematical framework to these lineage-tree associated expression states enables the inference of dynamic transitions. We apply our novel approach in order to infer temporal sequences of events, quantitative switching rates, and network topology among a set of ESC states.
Taken together, we identify distinct expression states in ES cells, gain fundamental insight into how a strong epigenetic modifier enforces the stability of these states, and develop and apply a new method for the identification of cellular trajectories using scalable in situ readouts of cellular state.
Resumo:
Many authors point out that the front-end of new product development (NPD) is a critical success factor in the NPD process and that numerous companies face difficulties in carrying it out appropriately. Therefore, it is important to develop new theories and proposals that support the effective implementation of this earliest phase of NPD. This paper presents a new method to support the development of front-end activities based on integrating technology roadmapping (TRM) and project portfolio management (PPM). This new method, called the ITP Method, was implemented at a small Brazilian high-tech company in the nanotechnology industry to explore the integration proposal. The case study demonstrated that the ITP Method provides a systematic procedure for the fuzzy front-end and integrates innovation perspectives into a single roadmap, which allows for a better alignment of business efforts and communication of product innovation goals. Furthermore, the results indicated that the method may also improve quality, functional integration and strategy alignment. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Industry professionals of the near future will be supported by an IT infrastructure that enables them to complete a task by drawing on resources and people with expertise anywhere in the world, and access to knowledge through specific training programs that address the task requirements. The increasing uptake of new technologies enables information to reach a diverse population and to provide flexible learning environments 24 hours a day, 7 days a week. This paper examines one of the key areas where the World Wide Web will impact on the water and wastewater industries, namely technology transfer and training. The authors will present their experiences of developing online training courses for wastewater industry professionals over the last two years. The perspective is that of two people working at the coalface.
Resumo:
The binary diffusivities of water in low molecular weight sugars; fructose, sucrose and a high molecular weight carbohydrate; maltodextrin (DE 11) and the effective diffusivities of water in mixtures of these sugars (sucrose, glucose, fructose) and maltodextrin (DE 11) were determined using a simplified procedure based on the Regular Regime Approach. The effective diffusivity of these mixtures exhibited both the concentration and molecular weight dependence. Surface stickiness was observed in all samples during desorption, with fructose exhibiting the highest and maltodextrin the lowest. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
This article presents a framework to an Industrial Engineering and Management Science course from School of Management and Industrial Studies using Autonomous Ground Vehicles (AGV) to supply materials to a production line as an experimental setup for the students to acquire knowledge in the production robotics area. The students must be capable to understand and put into good use several concepts that will be of utmost importance in their professional life such as critical decisions regarding the study, development and implementation of a production line. The main focus is a production line using AGVs, where the students are required to address several topics such as: sensors actuators, controllers and an high level management and optimization software. The presented framework brings to the robotics teaching community methodologies that allow students from different backgrounds, that normally don’t experiment with the robotics concepts in practice due to the big gap between theory and practice, to go straight to ”making” robotics. Our aim was to suppress the minimum start point level thus allowing any student to fully experience robotics with little background knowledge.
Resumo:
The objective of the dissertation is to increase understanding and knowledge in the field where group decision support system (GDSS) and technology selection research overlap in the strategic sense. The purpose is to develop pragmatic, unique and competent management practices and processes for strategic technology assessment and selection from the whole company's point of view. The combination of the GDSS and technology selection is approached from the points of view of the core competence concept, the lead user -method, and different technology types. In this research the aim is to find out how the GDSS contributes to the technology selection process, what aspects should be considered when selecting technologies to be developed or acquired, and what advantages and restrictions the GDSS has in the selection processes. These research objectives are discussed on the basis of experiences and findings in real life selection meetings. The research has been mainly carried outwith constructive, case study research methods. The study contributes novel ideas to the present knowledge and prior literature on the GDSS and technology selection arena. Academic and pragmatic research has been conducted in four areas: 1) the potential benefits of the group support system with the lead user -method,where the need assessment process is positioned as information gathering for the selection of wireless technology development projects; 2) integrated technology selection and core competencies management processes both in theory and in practice; 3) potential benefits of the group decision support system in the technology selection processes of different technology types; and 4) linkages between technology selection and R&D project selection in innovative product development networks. New type of knowledge and understanding has been created on the practical utilization of the GDSS in technology selection decisions. The study demonstrates that technology selection requires close cooperation between differentdepartments, functions, and strategic business units in order to gather the best knowledge for the decision making. The GDSS is proved to be an effective way to promote communication and co-operation between the selectors. The constructs developed in this study have been tested in many industry fields, for example in information and communication, forest, telecommunication, metal, software, and miscellaneous industries, as well as in non-profit organizations. The pragmatic results in these organizations are some of the most relevant proofs that confirm the scientific contribution of the study, according to the principles of the constructive research approach.
Resumo:
Transgenic technology has become an essential tool for the development of animal biotechnologies, and animal cloning through somatic cell nuclear transfer (SCNT) enabled the generation of genetically modified animals utilizing previously modified and selected cell lineages as nuclei donors, assuring therefore the generation of homogeneous herds expressing the desired modification. The present study aimed to discuss the use of SCNT as an important methodology for the production of transgenic herds, and also some recent insights on genetic modification of nuclei donors and possible effects of gene induction of pluripotency on SCNT.
Resumo:
Recent advances in tissue engineering and regenerative medicine have shown that controlling cells microenvironment during growth is a key element to the development of successful therapeutic system. To achieve such control, researchers have first proposed the use of polymeric scaffolds that were able to support cellular growth and, to a certain extent, favor cell organization and tissue structure. With nowadays availability of a large pool of stem cell lines, such approach has appeared to be rather limited since it does not offer the fine control of the cell micro-environment in space and time (4D). Therefore, researchers are currently focusing their efforts on developing strategies that include active compound delivery systems in order to add a fourth dimension to the design of 3D scaffolds. This review will focus on recent concepts and applications of 2D and 3D techniques that have been used to control the load and release of active compounds used to promote cell differentiation and proliferation in or out of a scaffold. We will first present recent advances in the design of 2D polymeric scaffolds and the different techniques that have been used to deposit molecular cues and cells in a controlled fashion. We will continue presenting the recent advances made in the design of 3D scaffolds based on hydrogels as well as polymeric fibers and we will finish by presenting some of the research avenues that are still to be explored.