999 resultados para Scalable documents


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a power scalable digital base band for a low-IF receiver for IEEE 802.15.4-2006. The digital section's sampling frequency and bit width are used as knobs to reduce the power under favorable signal and interference scenarios, thus recovering the design margins introduced to handle worst case conditions. We propose tuning of these knobs based on measurements of Signal and the interference levels. We show that in a 0.13u CMOS technology, for an adaptive digital base band section of the receiver designed to meet the 802.15.4 standard specification, power saving can be up to nearly 85% (0.49mW against 3.3mW) in favorable interference and signal conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a set of metrics that evaluate the uniformity, sharpness, continuity, noise, stroke width variance,pulse width ratio, transient pixels density, entropy and variance of components to quantify the quality of a document image. The measures are intended to be used in any optical character recognition (OCR) engine to a priori estimate the expected performance of the OCR. The suggested measures have been evaluated on many document images, which have different scripts. The quality of a document image is manually annotated by users to create a ground truth. The idea is to correlate the values of the measures with the user annotated data. If the measure calculated matches the annotated description,then the metric is accepted; else it is rejected. In the set of metrics proposed, some of them are accepted and the rest are rejected. We have defined metrics that are easily estimatable. The metrics proposed in this paper are based on the feedback of homely grown OCR engines for Indic (Tamil and Kannada) languages. The metrics are independent of the scripts, and depend only on the quality and age of the paper and the printing. Experiments and results for each proposed metric are discussed. Actual recognition of the printed text is not performed to evaluate the proposed metrics. Sometimes, a document image containing broken characters results in good document image as per the evaluated metrics, which is part of the unsolved challenges. The proposed measures work on gray scale document images and fail to provide reliable information on binarized document image.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural Support Vector Machines (SSVMs) have recently gained wide prominence in classifying structured and complex objects like parse-trees, image segments and Part-of-Speech (POS) tags. Typical learning algorithms used in training SSVMs result in model parameters which are vectors residing in a large-dimensional feature space. Such a high-dimensional model parameter vector contains many non-zero components which often lead to slow prediction and storage issues. Hence there is a need for sparse parameter vectors which contain a very small number of non-zero components. L1-regularizer and elastic net regularizer have been traditionally used to get sparse model parameters. Though L1-regularized structural SVMs have been studied in the past, the use of elastic net regularizer for structural SVMs has not been explored yet. In this work, we formulate the elastic net SSVM and propose a sequential alternating proximal algorithm to solve the dual formulation. We compare the proposed method with existing methods for L1-regularized Structural SVMs. Experiments on large-scale benchmark datasets show that the proposed dual elastic net SSVM trained using the sequential alternating proximal algorithm scales well and results in highly sparse model parameters while achieving a comparable generalization performance. Hence the proposed sequential alternating proximal algorithm is a competitive method to achieve sparse model parameters and a comparable generalization performance when elastic net regularized Structural SVMs are used on very large datasets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When document corpus is very large, we often need to reduce the number of features. But it is not possible to apply conventional Non-negative Matrix Factorization(NMF) on billion by million matrix as the matrix may not fit in memory. Here we present novel Online NMF algorithm. Using Online NMF, we reduced original high-dimensional space to low-dimensional space. Then we cluster all the documents in reduced dimension using k-means algorithm. We experimentally show that by processing small subsets of documents we will be able to achieve good performance. The method proposed outperforms existing algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Development towards the combination of miniaturization and improved functionality of RFIC has been stalled due to the lack of high-performance integrated inductors. To meet this challenge, integration of magnetic material with high permeability as well as low conductivity is a must. Ferrite films are excellent candidates for RF devices due to their low cost, high resistivity, and low eddy current losses. Unlike its bulk counterpart, nanocrystalline zinc ferrite, because of partial inversion in the spinel structure, exhibits novel magnetic properties suitable for RF applications. However, most scalable ferrite film deposition processes require either high temperature or expensive equipment or both. We report a novel low temperature (< 200 degrees C) solution-based deposition process for obtaining high quality, polycrystalline zinc ferrite thin films (ZFTF) on Si (100) and on CMOS-foundry-fabricated spiral inductor structures, rapidly, using safe solvents and precursors. An enhancement of up to 20% at 5 GHz in the inductance of a fabricated device was achieved due to the deposited ZFTF. Substantial inductance enhancement requires sufficiently thick films and our reported process is capable of depositing smooth, uniform films as thick as similar to 20 mu m just by altering the solution composition. The method is capable of depositing film conformally on a surface with complex geometry. As it requires neither a vacuum system nor any post-deposition processing, the method reported here has a low thermal budget, making it compatible with modern CMOS process flow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In social choice theory, preference aggregation refers to computing an aggregate preference over a set of alternatives given individual preferences of all the agents. In real-world scenarios, it may not be feasible to gather preferences from all the agents. Moreover, determining the aggregate preference is computationally intensive. In this paper, we show that the aggregate preference of the agents in a social network can be computed efficiently and with sufficient accuracy using preferences elicited from a small subset of critical nodes in the network. Our methodology uses a model developed based on real-world data obtained using a survey on human subjects, and exploits network structure and homophily of relationships. Our approach guarantees good performance for aggregation rules that satisfy a property which we call expected weak insensitivity. We demonstrate empirically that many practically relevant aggregation rules satisfy this property. We also show that two natural objective functions in this context satisfy certain properties, which makes our methodology attractive for scalable preference aggregation over large scale social networks. We conclude that our approach is superior to random polling while aggregating preferences related to individualistic metrics, whereas random polling is acceptable in the case of social metrics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability to perform strong updates is the main contributor to the precision of flow-sensitive pointer analysis algorithms. Traditional flow-sensitive pointer analyses cannot strongly update pointers residing in the heap. This is a severe restriction for Java programs. In this paper, we propose a new flow-sensitive pointer analysis algorithm for Java that can perform strong updates on heap-based pointers effectively. Instead of points-to graphs, we represent our points-to information as maps from access paths to sets of abstract objects. We have implemented our analysis and run it on several large Java benchmarks. The results show considerable improvement in precision over the points-to graph based flow-insensitive and flow-sensitive analyses, with reasonable running time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A power scalable receiver architecture is presented for low data rate Wireless Sensor Network (WSN) applications in 130nm RF-CMOS technology. Power scalable receiver is motivated by the ability to leverage lower run-time performance requirement to save power. The proposed receiver is able to switch power settings based on available signal and interference levels while maintaining requisite BER. The Low-IF receiver consists of Variable Noise and Linearity LNA, IQ Mixers, VGA, Variable Order Complex Bandpass Filter and Variable Gain and Bandwidth Amplifier (VGBWA) capable of driving variable sampling rate ADC. Various blocks have independent power scaling controls depending on their noise, gain and interference rejection (IR) requirements. The receiver is designed for constant envelope QPSK-type modulation with 2.4GHz RF input, 3MHz IF and 2MHz bandwidth. The chip operates at 1V Vdd with current scalable from 4.5mA to 1.3mA and chip area of 0.65mm2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural Support Vector Machines (SSVMs) and Conditional Random Fields (CRFs) are popular discriminative methods used for classifying structured and complex objects like parse trees, image segments and part-of-speech tags. The datasets involved are very large dimensional, and the models designed using typical training algorithms for SSVMs and CRFs are non-sparse. This non-sparse nature of models results in slow inference. Thus, there is a need to devise new algorithms for sparse SSVM and CRF classifier design. Use of elastic net and L1-regularizer has already been explored for solving primal CRF and SSVM problems, respectively, to design sparse classifiers. In this work, we focus on dual elastic net regularized SSVM and CRF. By exploiting the weakly coupled structure of these convex programming problems, we propose a new sequential alternating proximal (SAP) algorithm to solve these dual problems. This algorithm works by sequentially visiting each training set example and solving a simple subproblem restricted to a small subset of variables associated with that example. Numerical experiments on various benchmark sequence labeling datasets demonstrate that the proposed algorithm scales well. Further, the classifiers designed are sparser than those designed by solving the respective primal problems and demonstrate comparable generalization performance. Thus, the proposed SAP algorithm is a useful alternative for sparse SSVM and CRF classifier design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An efficient and scalable total synthesis of the architecturally challenging sesquiterpenoid (+/-)-penifulvin A has been accomplished via a 12-step sequence with an overall yield of 16%. For the construction of this structurally complex tetracyclic molecule, the key steps used included 1,4-conjugate addition, a Pd(0) catalyzed cross-coupling reaction between an enol phosphate and trimethyl aluminum, Claisen rearrangement using the Johnson orthoester protocol, Ti(III)-mediated reductive epoxide opening-cyclization, Lewis acid catalyzed epoxy-aldehyde rearrangement, and finally a substrate controlled oxidative cascade lactonization process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is essential to accurately estimate the working set size (WSS) of an application for various optimizations such as to partition cache among virtual machines or reduce leakage power dissipated in an over-allocated cache by switching it OFF. However, the state-of-the-art heuristics such as average memory access latency (AMAL) or cache miss ratio (CMR) are poorly correlated to the WSS of an application due to 1) over-sized caches and 2) their dispersed nature. Past studies focus on estimating WSS of an application executing on a uniprocessor platform. Estimating the same for a chip multiprocessor (CMP) with a large dispersed cache is challenging due to the presence of concurrently executing threads/processes. Hence, we propose a scalable, highly accurate method to estimate WSS of an application. We call this method ``tagged WSS (TWSS)'' estimation method. We demonstrate the use of TWSS to switch-OFF the over-allocated cache ways in Static and Dynamic NonUniform Cache Architectures (SNUCA, DNUCA) on a tiled CMP. In our implementation of adaptable way SNUCA and DNUCA caches, decision of altering associativity is taken by each L2 controller. Hence, this approach scales better with the number of cores present on a CMP. It gives overall (geometric mean) 26% and 19% higher energy-delay product savings compared to AMAL and CMR heuristics on SNUCA, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here, we demonstrate an uninterrupted galvanic replacement reaction (GRR) for the synthesis of metallic (Ag, Cu and Sn) and bimetallic (Cu M, M=Ag, Au, Pt and Pd) sponges/dendrites by sacrificing the low reduction potential metals (Mg in our case) in acidic medium. The acidic medium prevents the oxide formation on Mg surface and facilitates the uninterrupted reaction. The morphology of dendritic/spongy structures is controlled by the volume of acid used for this reaction. The growth mechanism of the spongy/dendritic microstructures is explained by diffusion-limited aggregate model (DLA), which is also largely affected by the volume of acid. The significance of this method is that the yield can be easily predicted, which is a major challenge for the commercialization of the products. Furthermore, the synthesis is complete in 1-2 minutes at room temperature. We show that the sponges/dendrites efficiently act as catalysts to reduce 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) using NaBH4-a widely studied conversion process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe our novel LED communication infrastructure and demonstrate its scalability across platforms. Our system achieves 50 kilo bits per second on very simple SoCs and scales to megabits bits per second rates on dual processor based mobile phone platforms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The broader goal of the research being described here is to automatically acquire diagnostic knowledge from documents in the domain of manual and mechanical assembly of aircraft structures. These documents are treated as a discourse used by experts to communicate with others. It therefore becomes possible to use discourse analysis to enable machine understanding of the text. The research challenge addressed in the paper is to identify documents or sections of documents that are potential sources of knowledge. In a subsequent step, domain knowledge will be extracted from these segments. The segmentation task requires partitioning the document into relevant segments and understanding the context of each segment. In discourse analysis, the division of a discourse into various segments is achieved through certain indicative clauses called cue phrases that indicate changes in the discourse context. However, in formal documents such language may not be used. Hence the use of a domain specific ontology and an assembly process model is proposed to segregate chunks of the text based on a local context. Elements of the ontology/model, and their related terms serve as indicators of current context for a segment and changes in context between segments. Local contexts are aggregated for increasingly larger segments to identify if the document (or portions of it) pertains to the topic of interest, namely, assembly. Knowledge acquired through such processes enables acquisition and reuse of knowledge during any part of the lifecycle of a product.