969 resultados para STOCHASTIC PROCESSES


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Exam and solutions in PDF

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Exam and solutions in PDF

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Exercises and solutions in LaTex

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Exam and solutions in PDF

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Exam and solutions in PDF

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Exercises and solutions in LaTex

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Exam and solutions in PDF

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Exam and solutions in PDF

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Exam questions and solutions in LaTex

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Exam questions and solutions in PDF

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Exam and solutions in LaTex

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Exam and solutions in LaTex

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Exam and solutions in LaTex

Relevância:

60.00% 60.00%

Publicador:

Resumo:

El objetivo de este documento es recopilar algunos resultados clasicos sobre existencia y unicidad ´ de soluciones de ecuaciones diferenciales estocasticas (EDEs) con condici ´ on final (en ingl ´ es´ Backward stochastic differential equations) con particular enfasis en el caso de coeficientes mon ´ otonos, y su cone- ´ xion con soluciones de viscosidad de sistemas de ecuaciones diferenciales parciales (EDPs) parab ´ olicas ´ y el´ıpticas semilineales de segundo orden.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One of the key aspects in 3D-image registration is the computation of the joint intensity histogram. We propose a new approach to compute this histogram using uniformly distributed random lines to sample stochastically the overlapping volume between two 3D-images. The intensity values are captured from the lines at evenly spaced positions, taking an initial random offset different for each line. This method provides us with an accurate, robust and fast mutual information-based registration. The interpolation effects are drastically reduced, due to the stochastic nature of the line generation, and the alignment process is also accelerated. The results obtained show a better performance of the introduced method than the classic computation of the joint histogram