977 resultados para SPONTANEOUS POLARIZATION
Resumo:
Current-potential relationships are derived for porous electrode systems following a homogeneous model and whenadsorbed intermediates participate in the electrode reaction. Limiting Tafel slopes were deduced and compared with thecorresponding behavior on planar electrode systems. The theoretical results showed doubling of Tafel slopes when theslow-step is a charge-transfer reaction and a nonlogarithmic current-voltage behavior when the slow-step is a chemical reaction.Comparison of the experimental results with theory for the case of oxygen reduction on carbon surfaces in alkalinemedia indicates that a slow chemical reaction following the initial charge-transfer reaction to be the likely rate-controllingstep. Theoretical relationships are utilized to determine the exchange current density and the surface coverage by the adsorbedintermediates during the course of oxygen reduction from alkaline solutions on "carbon." Tafel slope measurementson planar and porous electrodes for the same reaction are suggested as one of the diagnostic criteria for elucidatingthe mechanistic pathways of electrochemical reactions.
Resumo:
A unified treatment of polarization relaxation, dielectric dispersion and solvation dynamics in a dense, dipolar liquid is presented. It is shown that the information of solvent polarization relaxation that is obtained by macroscopic dielectric dispersion experiments is not sufficient to understand dynamics of solvation of a newly created ion or dipole. In solvation, a significant contribution comes from intermediate wave vector processes which depend critically on the short range (nearest‐neighbor) spatial and orientational order that are present in a dense, dipolar liquid. An analytic expression is obtained for the time dependent solvation energy that depends, in addition to the translational and rotational diffusion coefficients of the liquid, on the ratio of solute–solvent molecular sizes and on the microscopic structure of the polar liquid. Mean spherical approximation (MSA) theory is used to obtain numerical results for polarization relaxation, for wave vector and frequency dependent dielectric function and for time dependent solvation energy. We find that in the absence of translational contribution, the solvation of an ion is, in general, nonexponential. In this case, the short time decay is dominated by the longitudinal relaxation time but the long time decay is dominated by much slower large wave vector processes involving nearest‐neighbor molecules. The presence of a significant translational contribution drastically alters the decay behavior. Now, the long‐time behavior is given by the longitudinal relaxation time constant and the short time dynamics is controlled by the large wave vector processes. Thus, although the continuum model itself is conceptually wrong, a continuum model like result is recovered in the presence of a sizeable translational contribution. The continuum model result is also recovered in the limit of large solute to solvent size ratio. In the opposite limit of small solute size, the decay is markedly nonexponential (if the translational contribution is not very large) and a complete breakdown of the continuum model takes place. The significance of these results is discussed.
Resumo:
Starting from beam and target spin systems which are polarized in the usual way by applying external magnetic fields, measurements of appropriate final state tensor parameters, viz., {t0,1k, k=1,...,2j} of particle d with spin j in a reaction a+b→d+c1+c2+. . .are suggested to determine the reaction amplitudes in spin space free from any associated discrete ambiguity.
Resumo:
In some bimolecular diffusion-controlled electron transfer (ET) reactions such as ion recombination (IR), both solvent polarization relaxation and the mutual diffusion of the reacting ion pair may determine the rate and even the yield of the reaction. However, a full treatment with these two reaction coordinates is a challenging task and has been left mostly unsolved. In this work, we address this problem by developing a dynamic theory by combining the ideas from ET reaction literature and barrierless chemical reactions. Two-dimensional coupled Smoluchowski equations are employed to compute the time evolution of joint probability distribution for the reactant (P-(1)(X,R,t)) and the product (p((2))(X,R,t)), where X, as is usual in ET reactions, describes the solvent polarization coordinate and R is the distance between the reacting ion pair. The reaction is described by a reaction line (sink) which is a function of X and R obtained by imposing a condition of equal energy on the initial and final states of a reacting ion pair. The resulting two-dimensional coupled equations of motion have been solved numerically using an alternate direction implicit (ADI) scheme (Peaceman and Rachford, J. Soc. Ind. Appl. Math. 1955, 3, 28). The results reveal interesting interplay between polarization relaxation and translational dynamics. The following new results have been obtained. (i) For solvents with slow longitudinal polarization relaxation, the escape probability decreases drastically as the polarization relaxation time increases. We attribute this to caging by polarization of the surrounding solvent, As expected, for the solvents having fast polarization relaxation, the escape probability is independent of the polarization relaxation time. (ii) In the slow relaxation limit, there is a significant dependence of escape probability and average rate on the initial solvent polarization, again displaying the effects of polarization caging. Escape probability increases, and the average rate decreases on increasing the initial polarization. Again, in the fast polarization relaxation limit, there is no effect of initial polarization on the escape probability and the average rate of IR. (iii) For normal and barrierless regions the dependence of escape probability and the rate of IR on initial polarization is stronger than in the inverted region. (iv) Because of the involvement of dynamics along R coordinate, the asymmetrical parabolic (that is, non-Marcus) energy gap dependence of the rate is observed.
Resumo:
We investigate the effects of new physics scenarios containing a high mass vector resonance on top pair production at the LHC, using the polarization of the produced top. In particular we use kinematic distributions of the secondary lepton coming from top decay, which depends on top polarization, as it has been shown that the angular distribution of the decay lepton is insensitive to the anomalous tbW vertex and hence is a pure probe of new physics in top quark production. Spin sensitive variables involving the decay lepton are used to reconstruct the top polarization. Some sensitivity is found for the new couplings of the top.
Resumo:
In remote-sensing studies, particles that are comparable to the wavelength exhibit characteristic features in electromagnetic scattering, especially in the degree of linear polarization. These features vary with the physical properties of the particles, such as shape, size, refractive index, and orientation. In the thesis, the direct problem of computing the unknown scattered quantities using the known properties of the particles and the incident radiation is solved at both optical and radar spectral regions in a unique way. The internal electromagnetic fields of wavelength-scale particles are analyzed by using both novel and established methods to show how the internal fields are related to the scattered fields in the far zone. This is achieved by using the tools and methods that were developed specifically to reveal the internal field structure of particles and to study the mechanisms that relate the structure to the scattering characteristics of those particles. It is shown that, for spherical particles, the internal field is a combination of a forward propagating wave with the apparent wavelength determined by the refractive index of the particle, and a standing wave pattern with the apparent wavelength the same as for the incident wave. Due to the surface curvature and dielectric nature of the particle, the incident wave front undergoes a phase shift, and the resulting internal wave is focused mostly at the forward part of the particle similar to an optical lens. This focusing is also seen for irregular particles. It is concluded that, for both spherical and nonspherical particles, the interference at the far field between the partial waves that originate from these concentrated areas in the particle interior, is responsible for the specific polarization features that are common for wavelength-scale particles, such as negative values and local extrema in the degree of linear polarization, asymmetry of the phase function, and enhancement of intensity near the backscattering direction. The papers presented in this thesis solve the direct problem for particles with both simple and irregular shapes to demonstrate that these interference mechanisms are common for all dielectric wavelength-scale particles. Furthermore, it is shown that these mechanisms can be applied to both regolith particles in the optical wavelengths and hydrometeors at microwave frequencies. An advantage from this kind of study is that it does not matter whether the observation is active (e.g., polarimetric radar) or passive (e.g., optical telescope). In both cases, the internal field is computed for two mutually perpendicular incident polarizations, so that the polarization characteristics can then be analyzed according to the relation between these fields and the scattered far field.
Resumo:
In this note we demonstrate the use of top polarization in the study of t (t) over bar resonances at the LHC, in the possible case where the dynamics implies a non-zero top polarization. As a probe of top polarization we construct an asymmetry in the decay-lepton azimuthal angle distribution (corresponding to the sign of cos phi(l)) in the laboratory. The asymmetry is non-vanishing even for a symmetric collider like the LHC, where a positive z axis is not uniquely defined. The angular distribution of the leptons has the advantage of being a faithful top-spin analyzer, unaffected by possible anomalous tbW couplings, to linear order. We study, for purposes of demonstration, the case of a Z' as might exist in the little Higgs models. We identify kinematic cuts which ensure that our asymmetry reflects the polarization in sign and magnitude. We investigate possibilities at the LHC with two energy options: root s = 14TeV and root s = 7TeV, as well as at the Tevatron. At the LHC the model predicts net top quark polarization of the order of a few per cent for M-Z' similar or equal to 1200GeV, being as high as 10% for a smaller mass of the Z' of 700GeV and for the largest allowed coupling in the model, the values being higher for the 7TeV option. These polarizations translate to a deviation from the standard-model value of azimuthal asymmetry of up to about 4% (7%) for 14 (7) TeV LHC, whereas for the Tevatron, values as high as 12% are attained. For the 14TeV LHC with an integrated luminosity of 10 fb(-1), these numbers translate into a 3 sigma sensitivity over a large part of the range 500 less than or similar to M-Z' less than or similar to 1500GeV.
Resumo:
Two identities involving quarter-wave plates and half-wave plates are established. These are used to improve on an earlier gadget involving four wave plates leading to a new gadget involving just three plates, a half-wave plate and two quarter-wave plates, which can realize all SU(2) polarization transformations. This gadget is shown to involve the minimum number of quarter-wave and half-wave plates. The analysis leads to a decomposition theorem for SU (2) matrices in terms of factors which are symmetric fourth and eighth roots of the identity.
Resumo:
We study change in the polarization of electromagnetic waves due to the stimulated Raman scattering in a plasma. In this process an electromagnetic wave undergoes coherent scattering off an electron plasma wave. It is found that some of the observed polarization properties such as the rapid temporal variations, sense reversal, rotation of the plane of polarization, and change of nature of polarization in the case of pulsars and quasars could be accounted for through stimulated Raman scattering.
Resumo:
We utilize top polarization in the process e(+)e(-) -> t (t) over bar at the International Linear Collider ( ILC) with transverse beam polarization to probe interactions of the scalar and tensor type beyond the standard model and to disentangle their individual contributions. Ninety percent confidence level limits on the interactions with realistic integrated luminosity are presented and are found to improve by an order of magnitude compared to the case when the spin of the top quark is not measured. Sensitivities of the order of a few times 10(-3) TeV-2 for real and imaginary parts of both scalar and tensor couplings at root s = 500 and 800 GeV with an integrated luminosity of 500 fb(-1) and completely polarized beams are shown to be possible. A powerful model-independent framework for inclusive measurements is employed to describe the spin-momentum correlations, and their C, P, and T properties are presented in a technical appendix.
Resumo:
Measurement of dipolar couplings using separated local field (SLF) NMR experiment is a powerful tool for structural and dynamics studies of oriented molecules such as liquid crystals and membrane proteins in aligned lipid bilayers. Enhancing the sensitivity of such SLF techniques is of significant importance in present-day solid-state NMR methodology. The present study considers the use of adiabatic cross-polarization for this purpose, which is applied for the first time to one of the well-known SLF techniques, namely, polarization inversion spin exchange at the magic angle (PISEMA). The experiments have been carried out on a single crystal of a model peptide, and a dramatic enhancement in signal-to-noise up to 90% has been demonstrated.
Resumo:
Cross-polarization from the dipolar reservoir for a range of mismatched Hartmann-Hahn conditions has been considered. Experiment, in general, agrees with the dispersive Lorentzian behavior expected on the basis of quasi-equilibrium theory. It is observed that inclusion of additional mechanisms of polarization transfer lead to an improvment of the fit of the experimental results. The utility of extending the technique to the case of ordered long chain molecules, such as liquid crystals, for the measurement of the local dipolar field is also presented. (C) 2002 Elsevier Science (USA).
Resumo:
Submicron size Co, Ni and Co-Ni alloy powders have been synthesized by the polyol method using the corresponding metal malonates and Pd powder by reduction of PdOx in methanol. The kinetics of the hydrogen evolution reaction ( HER) in 6 M KOH electrolyte have been studied on electrodes made from the pressed powders. The d.c. polarization measurements have resulted in a value close to 120 mV decade(-1) for the Tafel slope, suggesting that the HER follows the Volmer-Heyrovsky mechanism. The values of exchange current density (i(o)) are in the range 1-10 mA cm(-2) for electrodes fabricated in the study. The a.c. impedance spectra measured at several potentials in the HER region showed a single semicircle in the Nyquist plots. Exchange current density (i(o)) and energy transfer coefficient (alpha) have been calculated by employing a nonlinear least square-fitting program.
Direct measurement of phase of foreward-scattered light using polarization heterodyne interferometer
Resumo:
We describe direct measurement of phase of ballistic photons transmitted through objects hidden in a turbid medium using a polarization interferometer employing a rotating analyzer. The unwrapped phase difference measurements from interferometry was possible for medium levels of turbidity and accurate phase measurement from the sinusoidal intensity was not detectable when l/l* is increased beyond 4.3. The measured phase on reconstruction using standard tomographic algorithms resulted in the recovery of the refractive index profile of the object hidden in the turbid medium.