916 resultados para SPEECH, LANGUAGE AND HEARING SCIENCES


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and aims: In addition to the well-known linguistic processing impairments in aphasia, oro-motor skills and articulatory implementation of speech segments are reported to be compromised to some degree in most types of aphasia. This study aimed to identify differences in the characteristics and coordination of lip movements in the production of a bilabial closure gesture between speech-like and nonspeech tasks in individuals with aphasia and healthy control subjects. Method and procedure: Upper and lower lip movement data were collected for a speech-like and a nonspeech task using an AG 100 EMMA system from five individuals with aphasia and five age and gender matched control subjects. Each task was produced at two rate conditions (normal and fast), and in a familiar and a less-familiar manner. Single articulator kinematic parameters (peak velocity, amplitude, duration, and cyclic spatio-temporal index) and multi-articulator coordination indices (average relative phase and variability of relative phase) were measured to characterize lip movements. Outcome and results: The results showed that when the two lips had similar task goals (bilabial closure) in speech-like versus nonspeech task, kinematic and coordination characteristics were not found to be different. However, when changes in rate were imposed on the bilabial gesture, only speech-like task showed functional adaptations, indicated by a greater decrease in amplitude and duration at fast rates. In terms of group differences, individuals with aphasia showed smaller amplitudes and longer movement durations for upper lip, higher spatio-temporal variability for both lips, and higher variability in lip coordination than the control speakers. Rate was an important factor in distinguishing the two groups, and individuals with aphasia were limited in implementing the rate changes. Conclusion and implications: The findings support the notion of subtle but robust differences in motor control characteristics between individuals with aphasia and the control participants, even in the context of producing bilabial closing gestures for a relatively simple speech-like task. The findings also highlight the functional differences between speech-like and nonspeech tasks, despite a common movement coordination goal for bilabial closure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

White matter tractsc onnecting areas involved in speech and motor control were examined using diffusion-tensor imagingingin a sample of peoplewhostutter (n=29) who were heterogeneous with respect to age, sex, handedness and stuttering severity. The goals were to replicate previous findings in developmental stuttering and to extend ourknowledge by evaluating the relationship between white matter differences in people who stutter and factors such as age, sex, handedness and stuttering severity. We replicated previous findings that showed reduced integrity in white matter underlying ventral premotorcortex, cerebral peduncles and posteriorcorpus callosum in people who stutter, relative to controls. Tractography analysis additionally revealed significantly reduced white matter integrity in the arcuate fasciculus bilaterally and the left corticospinal tract and significantly reduced connectivity within theleft corticobulbar tract in people who stutter. Region-of-interest analyses revealed reduced white matter integrity in people whostutter in the three pairs ocerebellar peduncles thatcarry the afferent and efferent fibers of the cerebellum. Within thegroup of people who stutter, the higher the stuttering severity index, the lower the white matter integrity in the leftangular gyrus but the greater the white matter connectivity in theleft corticobulbartract. Also,in people who stutter, handedness and age predicted the integrity of the corticospinal tract and peduncles, respectively. Further studies are needed to determine which of these white matter differences relate to the neural basis of stuttering and which reflect experience-dependent plasticity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The primary purpose of this study was to evaluate speech perception and localization abilities in children who have received sequential cochlear implants, with the first implant received before age 4 and the second implant received before age 12. Results indicate performance in the bilateral cochlear implant condition is significantly better than listening with each implant alone for the outcome measures used in this study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study uses the Deese-Roediger-McDermott paradigm to investigate how deaf children with cochlear implants organize their semantic networks as compared to their hearing age-mates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: The present study aimed at evaluating the occurrence and recurrence of middle ear effusion and possible associated factors in the first two years of life of 190 newborns and infants, participants in the interdisciplinary prevention, detection, and intervention program at the Clínica de Educação para Saúde of Universidade do Sagrado Coração, Methods: Newborns and infants were monthly submitted to anamneses, otoscopy, behavioral hearing assessment using sound instruments and pure tones (pediatric audiometry) and tympanometry. Results: The results revealed that 68.4% of infants presented one or more episodes of middle ear effusion during their two first years, with more recurrence among males. Peak occurrence was between four and 12 months of age and, the earlier the first episode, the higher the probability of recurrence. Greatest incidence was during May and August. It was found that, of the variables investigated, the period of exclusive breastfeeding actuated as a protector factor. With respect of risk factors, it was observed that passive smoking, gastro-esophageal reflux and respiratory allergy were related with the recurrences of effusion. Conclusion: Findings revealed the importance of periodic auditory follow-up for infants during their first two years of life, considered to be the critical period of auditory system maturation, during which sensory deprivation can be responsible for damage to the development of speech, language and other auditory abilities. Copyright © 2005 by Sociedade Brasileira de Pediatria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To characterize the PI component of long latency auditory evoked potentials (LLAEPs) in cochlear implant users with auditory neuropathy spectrum disorder (ANSD) and determine firstly whether they correlate with speech perception performance and secondly whether they correlate with other variables related to cochlear implant use. Methods: This study was conducted at the Center for Audiological Research at the University of Sao Paulo. The sample included 14 pediatric (4-11 years of age) cochlear implant users with ANSD, of both sexes, with profound prelingual hearing loss. Patients with hypoplasia or agenesis of the auditory nerve were excluded from the study. LLAEPs produced in response to speech stimuli were recorded using a Smart EP USB Jr. system. The subjects' speech perception was evaluated using tests 5 and 6 of the Glendonald Auditory Screening Procedure (GASP). Results: The P-1 component was detected in 12/14 (85.7%) children with ANSD. Latency of the P-1 component correlated with duration of sensorial hearing deprivation (*p = 0.007, r = 0.7278), but not with duration of cochlear implant use. An analysis of groups assigned according to GASP performance (k-means clustering) revealed that aspects of prior central auditory system development reflected in the P-1 component are related to behavioral auditory skills. Conclusions: In children with ANSD using cochlear implants, the P-1 component can serve as a marker of central auditory cortical development and a predictor of the implanted child's speech perception performance. (c) 2012 Elsevier Ireland Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: In recent years, the benefits associated with the use of cochlear implants (CIs), especially with regard to speech perception, have proven to surpass those produced by the use of hearing aids, making CIs a highly efficient resource for patients with severe/profound hearing loss. However, few studies so far have assessed the satisfaction of adult users of CIs. Objective: To analyze the relationship between the level of speech perception and degree of satisfaction of adult users of CI. Method: This was a prospective cross-sectional study conducted in the Audiological Research Center (CPA) of the Hospital of Craniofacial Anomalies, University of São Paulo (HRAC/USP), in Bauru, São Paulo, Brazil. A total of 12 users of CIs with pre-lingual or post-lingual hearing loss participated in this study. The following tools were used in the assessment: a questionnaire, "Satisfaction with Amplification in Daily Life" (SADL), culturally adapted to Brazilian Portuguese, as well as its relationship with the speech perception results; a speech perception test under quiet conditions; and the Hearing in Noise Test (HINT)Brazil under free field conditions. Results: The participants in the study were on the whole satisfied with their devices, and the degree of satisfaction correlated positively with the ability to perceive monosyllabic words under quiet conditions. The satisfaction did not correlate with the level of speech perception in noisy environments. Conclusion: Assessments of satisfaction may help professionals to predict what other factors, in addition to speech perception, may contribute to the satisfaction of CI users in order to reorganize the intervention process to improve the users' quality of life.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Career choices in the fields of science, technology, engineering, and mathematics (STEM) are favoured by men and often avoided by women; on the other hand, women tend to choose fields such as the social sciences. This not only leads to a shortage of employees with STEM degrees, but also reinforces the prejudice that certain (personality) characteristics are ‘typically female’ or ‘typically male’. Career orientation motives of young women and men can have important implications for gender (a-)typical career choices. However, there is little empirical research on the correlates of career orientation motives in young women in the field of STEM. This study seeks to address this gap by outlining the components of career orientation motives and showing relationships among them. Therefore, our results provide insight into the circumstances and conditions that are associated with academic and career choices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The struggle to achieve gender equality is accompanied by efforts to introduce gender-fair language. In languages with grammatical gender this implies the use of gender-appropriate forms (feminine for women and masculine for males). In the present research, results of a mixed method approach—a corpus analysis, a survey, and an experiment—provide consistent evidence that in Polish, feminine forms are still infrequent in women’s self-reference and that women psychologists continue to use masculine titles. Moreover, a qualitative inquiry examines the reasons why women prefer masculine over feminine job titles. Integrating findings from the two-stage design, we are able to identify the obstacles to promoting social change with the help of language and to understand the reasons behind them.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Se analizan los patrones de publicación y citación en ciencias humanas y sociales en Scopus en el período 2003-2012, según el alcance geográfico de la investigación. Los resultados muestran que los temas de alcance nacional tienen un predominio del español como lengua de publicación y una marcada preferencia por la autoría única frente a los patrones observados en el grupo de otros temas, no situados geográficamente, donde el inglés y la colaboración institucional es más fuerte y está más consolidada. La citación no parece estar determinada solo por el alcance geográfico de las investigaciones, sino también por el idioma de publicación, la coautoría y los perfiles de las revistas donde se publica. Se espera que los resultados den lugar a una reflexión constructiva sobre la cultura investigadora y editorial y que sean útiles como referencia para establecer criterios de evaluación en las comisiones evaluadoras y las políticas editoriales a nivel nacional

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Se analizan los patrones de publicación y citación en ciencias humanas y sociales en Scopus en el período 2003-2012, según el alcance geográfico de la investigación. Los resultados muestran que los temas de alcance nacional tienen un predominio del español como lengua de publicación y una marcada preferencia por la autoría única frente a los patrones observados en el grupo de otros temas, no situados geográficamente, donde el inglés y la colaboración institucional es más fuerte y está más consolidada. La citación no parece estar determinada solo por el alcance geográfico de las investigaciones, sino también por el idioma de publicación, la coautoría y los perfiles de las revistas donde se publica. Se espera que los resultados den lugar a una reflexión constructiva sobre la cultura investigadora y editorial y que sean útiles como referencia para establecer criterios de evaluación en las comisiones evaluadoras y las políticas editoriales a nivel nacional

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Se analizan los patrones de publicación y citación en ciencias humanas y sociales en Scopus en el período 2003-2012, según el alcance geográfico de la investigación. Los resultados muestran que los temas de alcance nacional tienen un predominio del español como lengua de publicación y una marcada preferencia por la autoría única frente a los patrones observados en el grupo de otros temas, no situados geográficamente, donde el inglés y la colaboración institucional es más fuerte y está más consolidada. La citación no parece estar determinada solo por el alcance geográfico de las investigaciones, sino también por el idioma de publicación, la coautoría y los perfiles de las revistas donde se publica. Se espera que los resultados den lugar a una reflexión constructiva sobre la cultura investigadora y editorial y que sean útiles como referencia para establecer criterios de evaluación en las comisiones evaluadoras y las políticas editoriales a nivel nacional

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La última década ha sido testigo de importantes avances en el campo de la tecnología de reconocimiento de voz. Los sistemas comerciales existentes actualmente poseen la capacidad de reconocer habla continua de múltiples locutores, consiguiendo valores aceptables de error, y sin la necesidad de realizar procedimientos explícitos de adaptación. A pesar del buen momento que vive esta tecnología, el reconocimiento de voz dista de ser un problema resuelto. La mayoría de estos sistemas de reconocimiento se ajustan a dominios particulares y su eficacia depende de manera significativa, entre otros muchos aspectos, de la similitud que exista entre el modelo de lenguaje utilizado y la tarea específica para la cual se está empleando. Esta dependencia cobra aún más importancia en aquellos escenarios en los cuales las propiedades estadísticas del lenguaje varían a lo largo del tiempo, como por ejemplo, en dominios de aplicación que involucren habla espontánea y múltiples temáticas. En los últimos años se ha evidenciado un constante esfuerzo por mejorar los sistemas de reconocimiento para tales dominios. Esto se ha hecho, entre otros muchos enfoques, a través de técnicas automáticas de adaptación. Estas técnicas son aplicadas a sistemas ya existentes, dado que exportar el sistema a una nueva tarea o dominio puede requerir tiempo a la vez que resultar costoso. Las técnicas de adaptación requieren fuentes adicionales de información, y en este sentido, el lenguaje hablado puede aportar algunas de ellas. El habla no sólo transmite un mensaje, también transmite información acerca del contexto en el cual se desarrolla la comunicación hablada (e.g. acerca del tema sobre el cual se está hablando). Por tanto, cuando nos comunicamos a través del habla, es posible identificar los elementos del lenguaje que caracterizan el contexto, y al mismo tiempo, rastrear los cambios que ocurren en estos elementos a lo largo del tiempo. Esta información podría ser capturada y aprovechada por medio de técnicas de recuperación de información (information retrieval) y de aprendizaje de máquina (machine learning). Esto podría permitirnos, dentro del desarrollo de mejores sistemas automáticos de reconocimiento de voz, mejorar la adaptación de modelos del lenguaje a las condiciones del contexto, y por tanto, robustecer al sistema de reconocimiento en dominios con condiciones variables (tales como variaciones potenciales en el vocabulario, el estilo y la temática). En este sentido, la principal contribución de esta Tesis es la propuesta y evaluación de un marco de contextualización motivado por el análisis temático y basado en la adaptación dinámica y no supervisada de modelos de lenguaje para el robustecimiento de un sistema automático de reconocimiento de voz. Esta adaptación toma como base distintos enfoque de los sistemas mencionados (de recuperación de información y aprendizaje de máquina) mediante los cuales buscamos identificar las temáticas sobre las cuales se está hablando en una grabación de audio. Dicha identificación, por lo tanto, permite realizar una adaptación del modelo de lenguaje de acuerdo a las condiciones del contexto. El marco de contextualización propuesto se puede dividir en dos sistemas principales: un sistema de identificación de temática y un sistema de adaptación dinámica de modelos de lenguaje. Esta Tesis puede describirse en detalle desde la perspectiva de las contribuciones particulares realizadas en cada uno de los campos que componen el marco propuesto: _ En lo referente al sistema de identificación de temática, nos hemos enfocado en aportar mejoras a las técnicas de pre-procesamiento de documentos, asimismo en contribuir a la definición de criterios más robustos para la selección de index-terms. – La eficiencia de los sistemas basados tanto en técnicas de recuperación de información como en técnicas de aprendizaje de máquina, y específicamente de aquellos sistemas que particularizan en la tarea de identificación de temática, depende, en gran medida, de los mecanismos de preprocesamiento que se aplican a los documentos. Entre las múltiples operaciones que hacen parte de un esquema de preprocesamiento, la selección adecuada de los términos de indexado (index-terms) es crucial para establecer relaciones semánticas y conceptuales entre los términos y los documentos. Este proceso también puede verse afectado, o bien por una mala elección de stopwords, o bien por la falta de precisión en la definición de reglas de lematización. En este sentido, en este trabajo comparamos y evaluamos diferentes criterios para el preprocesamiento de los documentos, así como también distintas estrategias para la selección de los index-terms. Esto nos permite no sólo reducir el tamaño de la estructura de indexación, sino también mejorar el proceso de identificación de temática. – Uno de los aspectos más importantes en cuanto al rendimiento de los sistemas de identificación de temática es la asignación de diferentes pesos a los términos de acuerdo a su contribución al contenido del documento. En este trabajo evaluamos y proponemos enfoques alternativos a los esquemas tradicionales de ponderado de términos (tales como tf-idf ) que nos permitan mejorar la especificidad de los términos, así como también discriminar mejor las temáticas de los documentos. _ Respecto a la adaptación dinámica de modelos de lenguaje, hemos dividimos el proceso de contextualización en varios pasos. – Para la generación de modelos de lenguaje basados en temática, proponemos dos tipos de enfoques: un enfoque supervisado y un enfoque no supervisado. En el primero de ellos nos basamos en las etiquetas de temática que originalmente acompañan a los documentos del corpus que empleamos. A partir de estas, agrupamos los documentos que forman parte de la misma temática y generamos modelos de lenguaje a partir de dichos grupos. Sin embargo, uno de los objetivos que se persigue en esta Tesis es evaluar si el uso de estas etiquetas para la generación de modelos es óptimo en términos del rendimiento del reconocedor. Por esta razón, nosotros proponemos un segundo enfoque, un enfoque no supervisado, en el cual el objetivo es agrupar, automáticamente, los documentos en clusters temáticos, basándonos en la similaridad semántica existente entre los documentos. Por medio de enfoques de agrupamiento conseguimos mejorar la cohesión conceptual y semántica en cada uno de los clusters, lo que a su vez nos permitió refinar los modelos de lenguaje basados en temática y mejorar el rendimiento del sistema de reconocimiento. – Desarrollamos diversas estrategias para generar un modelo de lenguaje dependiente del contexto. Nuestro objetivo es que este modelo refleje el contexto semántico del habla, i.e. las temáticas más relevantes que se están discutiendo. Este modelo es generado por medio de la interpolación lineal entre aquellos modelos de lenguaje basados en temática que estén relacionados con las temáticas más relevantes. La estimación de los pesos de interpolación está basada principalmente en el resultado del proceso de identificación de temática. – Finalmente, proponemos una metodología para la adaptación dinámica de un modelo de lenguaje general. El proceso de adaptación tiene en cuenta no sólo al modelo dependiente del contexto sino también a la información entregada por el proceso de identificación de temática. El esquema usado para la adaptación es una interpolación lineal entre el modelo general y el modelo dependiente de contexto. Estudiamos también diferentes enfoques para determinar los pesos de interpolación entre ambos modelos. Una vez definida la base teórica de nuestro marco de contextualización, proponemos su aplicación dentro de un sistema automático de reconocimiento de voz. Para esto, nos enfocamos en dos aspectos: la contextualización de los modelos de lenguaje empleados por el sistema y la incorporación de información semántica en el proceso de adaptación basado en temática. En esta Tesis proponemos un marco experimental basado en una arquitectura de reconocimiento en ‘dos etapas’. En la primera etapa, empleamos sistemas basados en técnicas de recuperación de información y aprendizaje de máquina para identificar las temáticas sobre las cuales se habla en una transcripción de un segmento de audio. Esta transcripción es generada por el sistema de reconocimiento empleando un modelo de lenguaje general. De acuerdo con la relevancia de las temáticas que han sido identificadas, se lleva a cabo la adaptación dinámica del modelo de lenguaje. En la segunda etapa de la arquitectura de reconocimiento, usamos este modelo adaptado para realizar de nuevo el reconocimiento del segmento de audio. Para determinar los beneficios del marco de trabajo propuesto, llevamos a cabo la evaluación de cada uno de los sistemas principales previamente mencionados. Esta evaluación es realizada sobre discursos en el dominio de la política usando la base de datos EPPS (European Parliamentary Plenary Sessions - Sesiones Plenarias del Parlamento Europeo) del proyecto europeo TC-STAR. Analizamos distintas métricas acerca del rendimiento de los sistemas y evaluamos las mejoras propuestas con respecto a los sistemas de referencia. ABSTRACT The last decade has witnessed major advances in speech recognition technology. Today’s commercial systems are able to recognize continuous speech from numerous speakers, with acceptable levels of error and without the need for an explicit adaptation procedure. Despite this progress, speech recognition is far from being a solved problem. Most of these systems are adjusted to a particular domain and their efficacy depends significantly, among many other aspects, on the similarity between the language model used and the task that is being addressed. This dependence is even more important in scenarios where the statistical properties of the language fluctuates throughout the time, for example, in application domains involving spontaneous and multitopic speech. Over the last years there has been an increasing effort in enhancing the speech recognition systems for such domains. This has been done, among other approaches, by means of techniques of automatic adaptation. These techniques are applied to the existing systems, specially since exporting the system to a new task or domain may be both time-consuming and expensive. Adaptation techniques require additional sources of information, and the spoken language could provide some of them. It must be considered that speech not only conveys a message, it also provides information on the context in which the spoken communication takes place (e.g. on the subject on which it is being talked about). Therefore, when we communicate through speech, it could be feasible to identify the elements of the language that characterize the context, and at the same time, to track the changes that occur in those elements over time. This information can be extracted and exploited through techniques of information retrieval and machine learning. This allows us, within the development of more robust speech recognition systems, to enhance the adaptation of language models to the conditions of the context, thus strengthening the recognition system for domains under changing conditions (such as potential variations in vocabulary, style and topic). In this sense, the main contribution of this Thesis is the proposal and evaluation of a framework of topic-motivated contextualization based on the dynamic and non-supervised adaptation of language models for the enhancement of an automatic speech recognition system. This adaptation is based on an combined approach (from the perspective of both information retrieval and machine learning fields) whereby we identify the topics that are being discussed in an audio recording. The topic identification, therefore, enables the system to perform an adaptation of the language model according to the contextual conditions. The proposed framework can be divided in two major systems: a topic identification system and a dynamic language model adaptation system. This Thesis can be outlined from the perspective of the particular contributions made in each of the fields that composes the proposed framework: _ Regarding the topic identification system, we have focused on the enhancement of the document preprocessing techniques in addition to contributing in the definition of more robust criteria for the selection of index-terms. – Within both information retrieval and machine learning based approaches, the efficiency of topic identification systems, depends, to a large extent, on the mechanisms of preprocessing applied to the documents. Among the many operations that encloses the preprocessing procedures, an adequate selection of index-terms is critical to establish conceptual and semantic relationships between terms and documents. This process might also be weakened by a poor choice of stopwords or lack of precision in defining stemming rules. In this regard we compare and evaluate different criteria for preprocessing the documents, as well as for improving the selection of the index-terms. This allows us to not only reduce the size of the indexing structure but also to strengthen the topic identification process. – One of the most crucial aspects, in relation to the performance of topic identification systems, is to assign different weights to different terms depending on their contribution to the content of the document. In this sense we evaluate and propose alternative approaches to traditional weighting schemes (such as tf-idf ) that allow us to improve the specificity of terms, and to better identify the topics that are related to documents. _ Regarding the dynamic language model adaptation, we divide the contextualization process into different steps. – We propose supervised and unsupervised approaches for the generation of topic-based language models. The first of them is intended to generate topic-based language models by grouping the documents, in the training set, according to the original topic labels of the corpus. Nevertheless, a goal of this Thesis is to evaluate whether or not the use of these labels to generate language models is optimal in terms of recognition accuracy. For this reason, we propose a second approach, an unsupervised one, in which the objective is to group the data in the training set into automatic topic clusters based on the semantic similarity between the documents. By means of clustering approaches we expect to obtain a more cohesive association of the documents that are related by similar concepts, thus improving the coverage of the topic-based language models and enhancing the performance of the recognition system. – We develop various strategies in order to create a context-dependent language model. Our aim is that this model reflects the semantic context of the current utterance, i.e. the most relevant topics that are being discussed. This model is generated by means of a linear interpolation between the topic-based language models related to the most relevant topics. The estimation of the interpolation weights is based mainly on the outcome of the topic identification process. – Finally, we propose a methodology for the dynamic adaptation of a background language model. The adaptation process takes into account the context-dependent model as well as the information provided by the topic identification process. The scheme used for the adaptation is a linear interpolation between the background model and the context-dependent one. We also study different approaches to determine the interpolation weights used in this adaptation scheme. Once we defined the basis of our topic-motivated contextualization framework, we propose its application into an automatic speech recognition system. We focus on two aspects: the contextualization of the language models used by the system, and the incorporation of semantic-related information into a topic-based adaptation process. To achieve this, we propose an experimental framework based in ‘a two stages’ recognition architecture. In the first stage of the architecture, Information Retrieval and Machine Learning techniques are used to identify the topics in a transcription of an audio segment. This transcription is generated by the recognition system using a background language model. According to the confidence on the topics that have been identified, the dynamic language model adaptation is carried out. In the second stage of the recognition architecture, an adapted language model is used to re-decode the utterance. To test the benefits of the proposed framework, we carry out the evaluation of each of the major systems aforementioned. The evaluation is conducted on speeches of political domain using the EPPS (European Parliamentary Plenary Sessions) database from the European TC-STAR project. We analyse several performance metrics that allow us to compare the improvements of the proposed systems against the baseline ones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article reviews attempts to characterize the mental operations mediated by left inferior prefrontal cortex, especially the anterior and inferior portion of the gyrus, with the functional neuroimaging techniques of positron emission tomography and functional magnetic resonance imaging. Activations in this region occur during semantic, relative to nonsemantic, tasks for the generation of words to semantic cues or the classification of words or pictures into semantic categories. This activation appears in the right prefrontal cortex of people known to be atypically right-hemisphere dominant for language. In this region, activations are associated with meaningful encoding that leads to superior explicit memory for stimuli and deactivations with implicit semantic memory (repetition priming) for words and pictures. New findings are reported showing that patients with global amnesia show deactivations in the same region associated with repetition priming, that activation in this region reflects selection of a response from among numerous relative to few alternatives, and that activations in a portion of this region are associated specifically with semantic relative to phonological processing. It is hypothesized that activations in left inferior prefrontal cortex reflect a domain-specific semantic working memory capacity that is invoked more for semantic than nonsemantic analyses regardless of stimulus modality, more for initial than for repeated semantic analysis of a word or picture, more when a response must be selected from among many than few legitimate alternatives, and that yields superior later explicit memory for experiences.