934 resultados para SPECIES DISTRIBUTION MODELS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Valoración de la transferencia temporal de los modelos de distribución de especies para su aplicación en nuestros días utilizando datos paleobotánicos Corilus avellana y Alnus glutinosa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With increasing complexity of today's consumer requirements, food industry decision makers should be able to respond to consumer needs much faster than ever before. The preliminary studies showed that for improving the performance and selecting suitable distribution models, decision makers in food industries should classify different types of consumers and based on the classification prepare different distributions flows. By studying the HORECA distribution channel, this paper suggest that, logistics decision makers should investigate the relationship between consumers' characteristics and urban freight distribution strategy in order to respond to the exact needs and in the follow to reduce the logistics cost.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Species distribution models (SDM) predict species occurrence based on statistical relationships with environmental conditions. The R-package biomod2 which includes 10 different SDM techniques and 10 different evaluation methods was used in this study. Macroalgae are the main biomass producers in Potter Cove, King George Island (Isla 25 de Mayo), Antarctica, and they are sensitive to climate change factors such as suspended particulate matter (SPM). Macroalgae presence and absence data were used to test SDMs suitability and, simultaneously, to assess the environmental response of macroalgae as well as to model four scenarios of distribution shifts by varying SPM conditions due to climate change. According to the averaged evaluation scores of Relative Operating Characteristics (ROC) and True scale statistics (TSS) by models, those methods based on a multitude of decision trees such as Random Forest and Classification Tree Analysis, reached the highest predictive power followed by generalized boosted models (GBM) and maximum-entropy approaches (Maxent). The final ensemble model used 135 of 200 calculated models (TSS > 0.7) and identified hard substrate and SPM as the most influencing parameters followed by distance to glacier, total organic carbon (TOC), bathymetry and slope. The climate change scenarios show an invasive reaction of the macroalgae in case of less SPM and a retreat of the macroalgae in case of higher assumed SPM values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Predicting species potential and future distribution has become a relevant tool in biodiversity monitoring and conservation.In this data article we present the suitability map of a virtual species generated based on two bioclimatic variables, and a dataset containing more than 700,000 random observations at the extent of Europe. The dataset includes spatial attributes such as: distance to roads, protected areas, country codes, and the habitat suitability of two spatially clustered species (grassland and forest species) and a wide-spread species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Morphological, anatomical and physiological plant and leaf traits of A. distorta, an endemic species of the Central Apennines on the Majella Massif, growing at 2,675 m a.s.l, were analyzed. The length of the phenological cycle starts immediately after the snowmelt at the end of May, lasting 128 ± 10 days. The low A. distorta height  (Hmax= 64 ± 4 mm) and total leaf area (TLA= 38 ± 9 cm2) associated to a high leaf mass area (LMA =11.8±0.6 mg cm−2) and a relatively high leaf tissue density (LTD = 124.6±14.3 mg cm−3) seem to be adaptive traits to the stress factors of the environment where it grows. From a physiological point of view, the high A. distorta photosynthetic rates (PN =19.6 ± 2.3 µmol m−2 s−1) and total chlorophyll content (Chla+b = 0.88 ± 0.13 mg g−1) in July are justified by the favorable temperature. PN decreases by 87% in September at the beginning of plant senescence. Photosynthesis and leaf respiration (RD) variations allow A. distorta to maintain a positive carbon balance during the growing season becoming indicative of the efficiency of plant carbon use. The results could be an important tool for conservation programmes of the A. distorta wild populations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We review and compare four broad categories of spatially-explicit modelling approaches currently used to understand and project changes in the distribution and productivity of living marine resources including: 1) statistical species distribution models, 2) physiology-based, biophysical models of single life stages or the whole life cycle of species, 3) food web models, and 4) end-to-end models. Single pressures are rare and, in the future, models must be able to examine multiple factors affecting living marine resources such as interactions between: i) climate-driven changes in temperature regimes and acidification, ii) reductions in water quality due to eutrophication, iii) the introduction of alien invasive species, and/or iv) (over-)exploitation by fisheries. Statistical (correlative) approaches can be used to detect historical patterns which may not be relevant in the future. Advancing predictive capacity of changes in distribution and productivity of living marine resources requires explicit modelling of biological and physical mechanisms. New formulations are needed which (depending on the question) will need to strive for more realism in ecophysiology and behaviour of individuals, life history strategies of species, as well as trophodynamic interactions occurring at different spatial scales. Coupling existing models (e.g. physical, biological, economic) is one avenue that has proven successful. However, fundamental advancements are needed to address key issues such as the adaptive capacity of species/groups and ecosystems. The continued development of end-to-end models (e.g., physics to fish to human sectors) will be critical if we hope to assess how multiple pressures may interact to cause changes in living marine resources including the ecological and economic costs and trade-offs of different spatial management strategies. Given the strengths and weaknesses of the various types of models reviewed here, confidence in projections of changes in the distribution and productivity of living marine resources will be increased by assessing model structural uncertainty through biological ensemble modelling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We review and compare four broad categories of spatially-explicit modelling approaches currently used to understand and project changes in the distribution and productivity of living marine resources including: 1) statistical species distribution models, 2) physiology-based, biophysical models of single life stages or the whole life cycle of species, 3) food web models, and 4) end-to-end models. Single pressures are rare and, in the future, models must be able to examine multiple factors affecting living marine resources such as interactions between: i) climate-driven changes in temperature regimes and acidification, ii) reductions in water quality due to eutrophication, iii) the introduction of alien invasive species, and/or iv) (over-)exploitation by fisheries. Statistical (correlative) approaches can be used to detect historical patterns which may not be relevant in the future. Advancing predictive capacity of changes in distribution and productivity of living marine resources requires explicit modelling of biological and physical mechanisms. New formulations are needed which (depending on the question) will need to strive for more realism in ecophysiology and behaviour of individuals, life history strategies of species, as well as trophodynamic interactions occurring at different spatial scales. Coupling existing models (e.g. physical, biological, economic) is one avenue that has proven successful. However, fundamental advancements are needed to address key issues such as the adaptive capacity of species/groups and ecosystems. The continued development of end-to-end models (e.g., physics to fish to human sectors) will be critical if we hope to assess how multiple pressures may interact to cause changes in living marine resources including the ecological and economic costs and trade-offs of different spatial management strategies. Given the strengths and weaknesses of the various types of models reviewed here, confidence in projections of changes in the distribution and productivity of living marine resources will be increased by assessing model structural uncertainty through biological ensemble modelling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-08

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nile perch (Lates niloticus), tilapia (Oreochromis spp), dagaa (Rastrineobola argentea, silver cyprinid), and haplochromines (Tribe Haplochromini) form the backbone of the commercial fishery on Lake Victoria. These fish stocks account for about 70% of the total catch in the three riparian states Uganda, Kenya, and Tanzania. The lake fisheries have been poorly managed, in part due to inadequate scientific analysis and management advice. The overall objective of this project was to model the stocks of the commercial fisheries of Lake Victoria with the view of determining reference points and current stock status. The Schaefer biomass model was fitted to available data for each stock (starting in the 1960s or later) in the form of landings, catch per unit effort, acoustic survey indices, and trawl survey indices. In most cases, the Schaefer model did not fit all data components very well, but attempts were made to find the best model for each stock. When the model was fitted to the Nile perch data starting from 1996, the estimated current biomass is 654 kt (95% CI 466–763); below the optimum of 692 kt and current harvest rate is 38% (33–73%), close to the optimum of 35%. At best, these can be used as tentative guidelines for the management of these fisheries. The results indicate that there have been strong multispecies interactions in the lake ecosystem. The findings from our study can be used as a baseline reference for future studies using more complex models, which could take these multispecies interactions into account.