Ecophysiology of Adonis distorta, a high-mountain species endemic of the Central Apennines


Autoria(s): Di Cecco, Valter; Department of Life Health and Environmental Sciences, University of L’Aquila, Via Vetoio loc. Coppito, 67100, L’Aquila, Italy; Catoni, Rosangela; Puglielli, Giacomo; Department of Environmental Biology, Sapienza University of Rome; Di Martino, Luciano; Majella Seed Bank. Majella National Park. loc. Colle Madonna. 66010, Lama dei Peligni (CH), Italy; Frattaroli, Anna Rita; Department of Life Health and Environmental Sciences, University of L’Aquila, Via Vetoio loc. Coppito, 67100, L’Aquila, Italy; Gratani, Loretta; Department of Environmental Biology, Sapienza University of Rome
Data(s)

28/10/2016

Resumo

Morphological, anatomical and physiological plant and leaf traits of A. distorta, an endemic species of the Central Apennines on the Majella Massif, growing at 2,675 m a.s.l, were analyzed. The length of the phenological cycle starts immediately after the snowmelt at the end of May, lasting 128 ± 10 days. The low A. distorta height  (Hmax= 64 ± 4 mm) and total leaf area (TLA= 38 ± 9 cm2) associated to a high leaf mass area (LMA =11.8±0.6 mg cm−2) and a relatively high leaf tissue density (LTD = 124.6±14.3 mg cm−3) seem to be adaptive traits to the stress factors of the environment where it grows. From a physiological point of view, the high A. distorta photosynthetic rates (PN =19.6 ± 2.3 µmol m−2 s−1) and total chlorophyll content (Chla+b = 0.88 ± 0.13 mg g−1) in July are justified by the favorable temperature. PN decreases by 87% in September at the beginning of plant senescence. Photosynthesis and leaf respiration (RD) variations allow A. distorta to maintain a positive carbon balance during the growing season becoming indicative of the efficiency of plant carbon use. The results could be an important tool for conservation programmes of the A. distorta wild populations.

Se han estudiado los rasgos morfologicos, anatomicos y fisiologicos de hojas de la especie endemica Adonis distorta en el macizo de Majella, Apeninos centrales. La especie crece a 2675 m de altitud y la duracion del ciclo fenologico se inicia inmediatamente despues de la fusion de la nieve a finales de mayo, con una duracion de 128±10 dias. El pequeno tamano de la planta (Hmax= 64±4 mm) y el area foliar total (TLA= 38±9 cm2) asociada a una elevada masa foliar (LMA= 11.8±0.6 mg cm−2) y una relativamente alta densidad titular de la hoja (LTD= 124.6±14.3 mg cm−3) parecen ser los rasgos de adaptacion a los factores de estres del entorno en el que crece. Desde un punto de vista fisiologico, las altas tasas fotosinteticas (PN =19.6±2.3 μmol m−2 s−1) y el contenido total de clorofila en julio (Chla+b= 0.88±0.13 mg g-1), se justifican por la temperatura mas favorable de ese mes. PN disminuye en un 87% en septiembre al inicio de la senescencia de la planta. la fotosintesis y la respiracion en la hoja (RD) presenta variaciones que permiten a A. distorta a mantener un balance positivo de carbono durante la estacion de crecimiento, siendo indicativo de la eficiencia del uso del carbono por las plantas. Los resultados podrian ser una herramienta importante para los programas de conservacion de las poblaciones silvestres de A. distorta.

Formato

application/pdf

Identificador

http://revistas.ucm.es/index.php/LAZA/article/view/51795

10.5209/LAZAROA.51795

Publicador

Ediciones Complutense

Relação

http://revistas.ucm.es/index.php/LAZA/article/view/51795/49461

/*ref*/Ashton, P.M.S. & Berlyn, G.P. 1994. A comparison of leaf physiology and anatomy of Quercus (section Erythrobalanus – Fagaceae) species in different light environments. Am. J. Bot. 81: 589-597.

/*ref*/Cai, Z.-Q., Slot, M. & Fan, Z.-X. 2005. Leaf development and photosynthetic properties of three tropical tree species with delayed greening. Photosynthetica 43: 91-98.

/*ref*/Crescente, M.F. & Gratani, L. 2013. Differences in morphological, physiological and growth traits between two endemic subspecies of Brassica rupestris Raf.: implications for their conservation. Am. J. Plant Sci. 4: 42-50.

/*ref*/Crescente, M.F., Gratani, L. & Larcher, W. 2000. Shoot growth efficiency and production of Quercus ilex L. in different climate. Flora 197: 2-9.

/*ref*/Di Pietro, R., Pelino, G., Stanisci, A. & Blasi C. 2008. Phytosociological features of Adonis distorta and Trifolium noricum subsp. praetutianum, two endemics of the Apennines (peninsular Italy). Acta Bot. Croat. 67 (2): 175-200.

/*ref*/Dirnbock, T., Essl, F. & Rabitsch, W. 2011. Disproportional risk for habitat loss of high-altitude endemic species under climate change. Glob. Change Biol. 17: 990-996.

/*ref*/Engler R., Randin, C., Thuiller, W., Dullinger, S., Zimmerman, N.E., […] & Guisan, A. 2011. 21st century climate change threatens mountain flora unequally across Europe. Glob. Change Biol. 17: 2330-2341.

/*ref*/Frattaroli, A.R., Di Martino, L. & Di Cecco, V., Catoni, R., Varone, L., Di Santo, M. & Gratani, L. 2013. Seed germination capability of four endemic species in the Central Apennines in Italy: relationship between seed size and germination capability. Lazaroa 34: 43-53.

/*ref*/Galmes, J., Flexas J. & Save, R. & Medrano, H. 2007. Water relations and stomatal characteristics of Mediterranean plants with different growth forms and leaf habits: responses to water stress and recovery. Plant Soil 290: 139-155.

/*ref*/Giorgi, F. & Lionello, P. 2008. Climate change projections for the Mediterranean region. Global Planet. Change 63: 90-104.

/*ref*/Gornall, J.L. & Guy, R.D. 2007. Geographic variation in ecophysiological traits of black Cottonwood (Populus trichocarpa). Can. J. Bot. 85: 1202-1213.

/*ref*/Gratani L., Catoni, R. & Pirone, G., Fratarolli, A.R. & Varone, L. 2012. Physiological and morphological leaf trait variations in two Apennine plant species in response to different altitudes. Photosynthetica 50: 15-23.

/*ref*/Gratani, L., Crescente, M.F. & D’Amato, V., Ricotta, C., Frattaroli, A.R. & Puglielli, G. 2014. Leaf traits variation in Sesleria nitida growing at different altitudes in the Central Apennines. Photosynthetica 52(3): 386-396.

/*ref*/Holm, G. 1954. Chlorophyll mutations in barley. Acta Agr. Scand. 4: 457-471.

/*ref*/Hunt, R. 1982. Plant Growth Curves. The Functional Approach to Growth Analysis. Edward Arnold, London.

/*ref*/Korner, C. 1999. Alpine Plant Life. Springer Verlag, Berlin.

/*ref*/Korner, C., Neumayer, M., Pelaez-Menendez-Rieldl, S. & Smeets-Scheel, A. 1989. Functional morphology of mountain plants. Flora 182: 353-383.

/*ref*/Korner, C. 2003. Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems, 2nd ed. Springer, Berlin.

/*ref*/Larcher, W., Kainmuller, C. & Wagner, J. 2010. Survival types of high mountain plants under extreme temperatures. Flora 205: 3-18.

/*ref*/Llambi, L., Fontaine, M., Rada, F., Saugier, B. & Sarmiento, L. 2003. Ecophysiology of dominant plant species during old-field succession in a high tropical Andean ecosystem. Arct. Antarct. Alp. Res. 35: 447-453.

/*ref*/Lim, P.O., Kim, H.J. & Nam, H.G. 2007. Leaf senescence. Ann. Rev. Plant Biol. 58: 115-136.

/*ref*/Loveys, B.R., Scheurwater, I., Pons, T.L., Fitter, A.H. & Atkin, O.K. 2002. Growth temperature influences the underlying components of relative growth rate: an investigation using inherently fast-and slowgrowing plant species. Plant Cell Environ. 25: 975-987.

/*ref*/Maclachlan, S. & Zalik, S. 1963. Plastid structure, chlorophyll concentration, and free aminoacid composition of a chlorophyll mutant of barley. Can. J. Bot. 41: 1053-1062.

/*ref*/Martin-Bravo S., Valcarcel, V. & Vargas, P. & Luceno, M. 2010. Geographical speciation related to Pleistocene range shifts in the western Mediterranean mountains. Taxon 59: 466-482.

/*ref*/Matile P., Ginsburg, S. & Schellenberg, M. & Thomas, H. 1988. Catabolites of chlorophyll in senescing barley leaves are localized in the vacuoles of mesophyllcells. P. Natl. Acad. Sci. USA 85: 9529-9532.

/*ref*/Nicotra, A.B., Atkin, O.K., Bonser, S.P., Davidson, A.M., Finnegan, E.J., Mathesius, U., Poot, P., Purugganan, M.D., Richards, C.L., Valladares, F. & van Kleunen, M. 2010. Plant phenotypic plasticity in a changing climate. Trends Plant Sci. 15: 684-692.

/*ref*/Niinemets, U. 2001. Global-scale climatic controls of leaf dry mass per area, density, and thickness in tres and shrubs. Ecology 82(2): 453-469.

/*ref*/Pellissier, L., Brathen, K.A., Pottier, J., Randin, .C.F., Vittoz, P., Dubuis, A., yoccoz, N.G., Alm, T., Zimmermann, N.E. & Guisan, A. 2010. Species distribution models reveal apparent competitive and facilitative effects of a dominant species on the distribution of tundra plants. Ecography 33: 1004-1014.

/*ref*/Poorter, H. & Evans, J.R. 1998. Photosynthetic nitrogen-use efficiency of species that differ inherently in specific leaf area. Oecologia 116: 26-37.

/*ref*/Poorter, H., Niinemets, U., Poorter, L., Wright, I.J. & Villar, R. 2009. Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol. 182: 565-588.

/*ref*/Pružinska, A., Tanner, G., Aubry, S., Anders, I., Moser, S., Muller, T., Ongania, K.H., Krautler, B., youn, J.y., Liljegren, S.J. & Hortensteiner, S. 2005. Chlorophyll breakdown in senescent Arabidopsis leaves. Characterization of chlorophyll catabolites and of chlorophyll catabolic enzymes involved in the degreening reaction. Plant Physiol. 139: 52-63.

/*ref*/Puglielli, G., Crescente, M.F., Frattaroli, A.R. & Gratani, L. 2015. Leaf mass per area (LMA) as a posible predictor of adaptive strategies for two species of Sesleria (Poaceae): analysis of morphological, anatomical and physiological leaf traits. Ann. Bot. Fenn. 52: 135-143.

/*ref*/Sanz-Elorza, M., Dana, E.D. & Gonzalez, A. 2003. Changes in the high-mountain vegetation of the central Iberian Peninsula as a probable sign of global warming. Ann. Bot. 92: 1-8.

/*ref*/Scheepens, J.F., Frei, E.S. & Stocklin, J. 2010. Genotypic and environmental variation in specific leaf área in a widespread Alpine plant after transplantation to different altitudes. Oecologia 164: 141-150.

/*ref*/Shen, H., Tang, y., Muraoka, H. & Washitani, I. 2008. Characteristics of leaf photosynthesis and simulated individual carbon budget in Primula nutans under contrasting light and temperature conditions. J. Plant Res. 121:191-200.

/*ref*/Taschler, D. & Neuner, G. 2004. Summer frost resistance and freezing patterns measured in situ in leaves of major alpine plant growth forms in relation to their upper distribution boundary. Plant Cell Environ. 27: 737-746.

/*ref*/Thuiller, W., Lavorel, S., Araujo, M.B., Sykes, M. & Prentice, C. 2005. Climate change threats to plant diversity in Europe. P. Natl. Acad. Sci. USA. 102: 8245-8250.

/*ref*/Valladares F., Gianoli, E. & Gomez, J.M. 2007. Ecological limits to plant phenotypic plasticity. New Phytol. 176: 749-763.

/*ref*/van Gils H., Conti, F., Ciaschetti, G. & Vestinga, E. 2012. Fine resolution distribution modelling of endemics in Majella National Park, Central Italy. Plant Biosyst. 146: 276-287.

/*ref*/Wielgolaski, F.E., Kjevik, S. & Kallio, P. 1975. Mineral content of tundra and forest tundra plants in Fennoscandia. In: Wielgolaski, F.E. (Ed.). Fennoscandian tundra ecosystems. Part 1. Plants and microorganisms. Pp. 316-332. Springer-Verlag, Berlin.

/*ref*/Whitehead, F.H. 1951. Ecology of the altopiano of Monte Maiella, Italy. J. Ecol. 39(2): 330-355.

/*ref*/Woodward, F.I. 1986. Ecophysiological studies on the shrub Vaccinium myrtillus L. taken from a wide altitudinal range. Oecologia 70: 580-586.

/*ref*/Woodward, F.I. 1987. Stomatal numbers are sensitive to increase in CO2 from pre-industrial levels. Nature 327: 617-618.

/*ref*/Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D., Baruch, Z, […] & Villar, R. 2004. The worldwide leaf economics spectrum. Nature 428: 821-827.

Direitos

LICENCIA DE USO: Los artículos a texto completo incluidos en el Portal de Revistas Científicas Complutenses son de acceso libre y propiedad de sus autores y/o editores. Por tanto, cualquier acto de reproducción, distribución, comunicación pública y/o transformación total o parcial requiere el consentimiento expreso y escrito de aquéllos. Cualquier enlace al texto completo de los artículos del Portal de Revistas Científicas Complutenses debe efectuarse a la URL oficial de la Universidad Complutense de Madrid

La revista Lazaroa, para fomentar el intercambio global del conocimiento, facilita el acceso sin restricciones a sus contenidos desde el momento de su publicación en la presente edición electrónica, y por eso es una revista de acceso abierto. Los originales publicados en esta revista son propiedad de la Universidad Complutense de Madrid y es obligatorio citar su procedencia en cualquier reproducción total o parcial. Todos los contenidos se distribuyen bajo una licencia de uso y distribución Creative Commons Reconocimiento 4.0 (CC BY 4.0). Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario. Puede consultar la versión informativa y el texto legal de la licencia.La revista Lazaroa no cobra por tasas por envío de trabajos, ni tampoco cuotas por la publicación de sus artículos.

Fonte

Lazaroa; Vol 37 (2016); 125-134

Lazaroa; Vol 37 (2016); 125-134

Palavras-Chave #Adonis distorta; leaf nitrogen content; photosynthetic nitrogen use efficiency; photosynthesis #Adonis distorta; contenido en nitrogeno de la hoja; eficiencia fotosintetica; fotosintesis
Tipo

info:eu-repo/semantics/article

Artículo revisado por pares

info:eu-repo/semantics/publishedVersion