915 resultados para SIMULTANEOUS REMOVAL
Resumo:
Modified montmorillonite was prepared at different surfactant (HDTMA) loadings through ion exchange. The conformational arrangement of the loaded surfactants within the interlayer space of MMT was obtained by computational modelling. The conformational change of surfactant molecules enhance the visual understanding of the results obtained from characterization methods such as XRD and surface analysis of the organoclays. Batch experiments were carried out for the adsorption of p-chlorophenol (PCP) and different conditions (pH and temperature) were used in order to determine the optimum sorption. For comparison purpose, the experiments were repeated under the same conditions for p-nitrophenol (PNP). Langmuir and Freundlich equations were applied to the adsorption isotherm of PCP and PNP. The Freundlich isotherm model was found to be the best fit for both of the phenolic compounds. This involved multilayer adsorptions in the adsorption process. In particular, the binding affinity value of PNP was higher than that of PCP and this is attributable to their hydrophobicities. The adsorption of the phenolic compounds by organoclays intercalated with highly loaded surfactants was markedly improved possibly due to the fact that the intercalated surfactant molecules within the interlayer space contribute to the partition phases, which result in greater adsorption of the organic pollutants.
Resumo:
Selective separation of nitrogen (N2) from methane (CH4) is highly significant in natural gas purification, and it is very challenging to achieve this because of their nearly identical size (the molecular diameters of N2 and CH4 are 3.64 Å and 3.80 Å, respectively). Here we theoretically study the adsorption of N2 and CH4 on B12 cluster and solid boron surfaces a-B12 and c-B28. Our results show that these electron-deficiency boron materials have higher selectivity in adsorbing and capturing N2 than CH4, which provides very useful information for experimentally exploiting boron materials for natural gas purification.
Resumo:
Boron, which is an essential element for plants, is toxic to humans and animals at high concentrations. Layered double hydroxides (LDHs) and thermally activated LDHs have shown good uptake of a range of boron species in laboratory scale experiments when compared to current available methods, which are for the most part ineffective or prohibitively expensive. LDHs were able to remove anions from water by anion exchange, the reformation (or memory) effect and direct precipitation. The main mechanism of boron uptake appeared to be anion exchange, which was confirmed by powder X-ray diffraction (XRD) measurements. Solution pH appeared to have little effect on boron sorption while thermal activation did not always significantly improve boron uptake. In addition, perpetration of numerous LDHs with varying boron anions in the interlayer region by direct co-precipitation and anion exchange have been reported by a number of groups. The composition and orientation of the interlayer boron ions could be identified with reasonable certainty by applying a number of characterisation techniques including: powder XRD, nuclear magnetic resonance spectroscopy (NMR), X-ray photoelectron spectroscopy (XPS) and infrared (IR) spectroscopy. There is still considerable scope for future research on the application of LDHs for the removal of boron contaminants.
Resumo:
Numbers of diesel engines in both stationary and mobile applications are increasing nowadays. Diesel engines emit lower Hydrocarbon (HC) and Carbon monoxide (CO) than gasoline engines. However, they can produce more nitrogen oxides (NOx) and have higher particulate matter (PM). On the other hand, emissions standards are getting stringent day by day due to considerable concerns about unregulated pollutants and particularly ultrafine particles deleterious effect on human health. Non-thermal plasma (NTP) treatment of exhaust gas is known as a promising technology for both NOx and PM reduction by introducing plasma inside the exhaust gas. Vehicle exhaust gases undergo chemical changes when exposed to plasma. In this study, the PM removal mechanism using NTP by applying high voltage pulses of up to 20 kVpp with a repetition rate of 10 kHz are investigated. It is found that, voltage increase not necessarily has a positive effect on PM removal in diesel engine emissions.
Resumo:
Synthetic goethite and thermally treated goethite at different temperatures were used to remove phosphate from sewage. The effect of annealing temperature on phosphate removal over time was investigated. X-ray diffraction(XRD), transmission electron microscopy (TEM), N2 adsorption and desorption (BET), and infrared emission spectrum (FT-IES) were utilized to characterize the phase, morphology, specific surface area, pore distribution, and the surface groups of samples. The results show that annealed products of goethite at temperatures over 250 °C are hematite with the similar morphology as the original goethite with different hydroxyl groups and surface area. Increasing temperature causes the decrease in hydroxyl groups, consequential increase in surface area at first and then experiences a decrease (14.8–110.4–12.6 m2/g) and the subsequent formation of nanoscale pores. The variation rate of hydroxyl groups and surface area based on FT-IES and BET, respectively, are used to evaluate the effect of annealing temperature on phosphate removal. By using all of the characterization techniques, it is concluded that the changes of phosphate removal basically result from the total variation rate between hydroxyl groups and surface area.
Resumo:
The work described in this technical report is part of an ongoing project to build practical tools for the manipulation, analysis and visualisation of recordings of the natural environment. This report describes the methods we use to remove background noise from spectrograms. It updates techniques previously described in Towsey and Planitz (2011), Technical report: acoustic analysis of the natural environment, downloadable from: http://eprints.qut.edu.au/41131/. It also describes noise removal from wave-forms, a technique not described in the above 2011 technical report.
Resumo:
A simple, sensitive, and validated method was developed for simultaneous determination of scoparone, capillarisin, rhein, and emodin in rat urine by ultra-performance liquid chromatography/electrospray ionization quadruple time-of-flight mass spectrometry (UPLC-MS). The urinary samples were analyzed on an Acquity UPLC BEH C18 1.7 microm 2.1x50 mm column. Scoparone, capillarisin, rhein, and emodin in rat urine were simultaneously analyzed with good separation. The lower limits of detection were 6.0, 9.0, 7.0, and 3.0 ng/mL, and the lower limits of quantification were 20.0, 33.0, 24.0, and 12.0 ng/mL for scoparone, capillarisin, rhein, and emodin, respectively. The intra- and inter-day precisions (RSD) were less than 9%. The intra- and inter-accuracies were found to be in the range of 94.14-104.54% for scoparone, 101.72-107.34% for capillarisin, 95.24-103.59% for rhein, and 101.32-107.82% for emodin at three concentration levels. The absolute recoveries for scoparone, capillarisin, rhein, and emodin were not less than 77.0%. The developed method has been applied to determine scoparone, capillarisin, rhein, and emodin in rat urine after oral administration of Yin Chen Hao Tang preparation, a traditional Chinese medicine formulation widely used in China for treatment of jaundice and liver disorders.
Resumo:
A completely validated method based on HPLC coupled with photodiode array detector (HPLC-UV) was described for evaluating and controlling quality of Yin Chen Hao Tang extract (YCHTE). First, HPLC-UV fingerprint chromatogram of YCHTE was established for preliminarily elucidating amount and chromatographic trajectory of chemical constituents in YCHTE. Second, for the first time, five mainly bioactive constituents in YCHTE were simultaneously determined based on fingerprint chromatogram for furthermore controlling the quality of YCHTE quantitatively. The developed method was applied to analyze 12 batches of YCHTE samples which consisted of herbal drugs from different places of production, showed acceptable linearity, intraday (RSD <5%), interday precision (RSD <4.80%), and accuracy (RSD <2.80%). As a result, fingerprint chromatogram determined 15 representative general fingerprint peaks, and the fingerprint chromatogram resemblances are all better than 0.9996. The contents of five analytes in different batches of YCHTE samples do not indicate significant difference. So, it is concluded that the developed HPLC-UV method is a more fully validated and complete method for evaluating and controlling the quality of YCHTE.
Resumo:
A method for the rapid and simultaneous determination of 6,7-dimethylesculetin (CAS 120-08-1) and geniposide (CAS 24512-63-8) in rat plasma has been developed, using validated high performance liquid chromatography (HPLC) with solid phase extraction (SPE). The HPLC analysis was performed on a commercially available column (200 mm x 4.6 mm, 5 microm) with acetonitrile-methanol-0.1% aqueous formic acid as mobile phase and the UV detection at 343 nm and 238 nm for 6,7-dimethylesculetin and geniposide, respectively. The calibration curves for 6,7-dimethylesculetin and geniposide were linear over the range 0.4-25.6 microg/mL and 1.12-71.68 microg/mL, respectively. The lower limits of quantitation were 0.40 microg/ mL and 1.12 microg/mL, and the lower limits of detection were 0.06 microg/mL and 0.09 microg/ mL, respectively. The intra-day and inter-day precision for 6,7-dimethylesculetin and geniposide were < 5%, whereas the absolute recovery percentages were > 74%. A successful application of the developed HPLC analysis was demonstrated for the pharmacokinetic study of a Traditional Chinese Medicine formula of Yin Chen Hao Tang preparation.
Resumo:
Background Hyperhomocysteinemia as a consequence of the MTHFR 677 C > T variant is associated with cardiovascular disease and stroke. Another factor that can potentially contribute to these disorders is a depleted nitric oxide level, which can be due to the presence of eNOS +894 G > T and eNOS −786 T > C variants that make an individual more susceptible to endothelial dysfunction. A number of genotyping methods have been developed to investigate these variants. However, simultaneous detection methods using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis are still lacking. In this study, a novel multiplex PCR-RFLP method for the simultaneous detection of MTHFR 677 C > T and eNOS +894 G > T and eNOS −786 T > C variants was developed. A total of 114 healthy Malay subjects were recruited. The MTHFR 677 C > T and eNOS +894 G > T and eNOS −786 T > C variants were genotyped using the novel multiplex PCR-RFLP and confirmed by DNA sequencing as well as snpBLAST. Allele frequencies of MTHFR 677 C > T and eNOS +894 G > T and eNOS −786 T > C were calculated using the Hardy Weinberg equation. Methods The 114 healthy volunteers were recruited for this study, and their DNA was extracted. Primer pair was designed using Primer 3 Software version 0.4.0 and validated against the BLAST database. The primer specificity, functionality and annealing temperature were tested using uniplex PCR methods that were later combined into a single multiplex PCR. Restriction Fragment Length Polymorphism (RFLP) was performed in three separate tubes followed by agarose gel electrophoresis. PCR product residual was purified and sent for DNA sequencing. Results The allele frequencies for MTHFR 677 C > T were 0.89 (C allele) and 0.11 (T allele); for eNOS +894 G > T, the allele frequencies were 0.58 (G allele) and 0.43 (T allele); and for eNOS −786 T > C, the allele frequencies were 0.87 (T allele) and 0.13 (C allele). Conclusions Our PCR-RFLP method is a simple, cost-effective and time-saving method. It can be used to successfully genotype subjects for the MTHFR 677 C > T and eNOS +894 G > T and eNOS −786 T > C variants simultaneously with 100% concordance from DNA sequencing data. This method can be routinely used for rapid investigation of the MTHFR 677 C > T and eNOS +894 G > T and eNOS −786 T > C variants.
Resumo:
Objective: Theaflavin (TF) from the black tea can react to human salivary proline-rich proteins (PRPs) to form stains on exposed dental surfaces. Here, we employed a model of protein/pigment film using TF and dephosphorylated bovine b-casein (Db-CN), which has an extended conformation, similar to that of salivary PRPs, on a sensor surface to assess the efficacy of cysteine proteases (CPs) including papain, stem bromelain, and ficin, on removing TF bound to Db-CN and the control TF readsorption on the residual substrate surfaces was also measured. Methods: The protein/pigment complex film was built by using a quartz crystal microbalance with dissipation (QCM-D). The efficacies of CPs were assessed by Boltzman equation model. The surface details were detected by grazing angle infrared spectroscopy spectra, atomic force microscopy images, and contact angles. Results: The efficacy order of CPs on hydrolyzing protein/pigment complex film is ficin > papain > bromelain. The results from grazing angle infrared spectroscopy spectra, atomic force microscopy images, and contact angles demonstrated that TF bound on the Db- CN was effectively removed by the CPs, and the amount of TF readsorption on both the residual film of the Db-CN/TF and the Db-CN was markedly decreased after hydrolysis. Conclusion: This study indicates the potential application of the CPs for tooth stain removal and suggests that these enzymes are worthy of further investigation for use in oral healthcare.
Resumo:
Both the United States and Canada have federal legislation that attempts to address employment inequities across specific target groups. The US has a long tradition of affirmative action, dating back to President Kennedy’s 1961 Executive Order; Canada enacted its Employment Equity Act in 1986. Employment Equity/Affirmative Action policy has attracted significant controversy, with high profile court cases and the repeal of state/provincial legislation. Coate and Loury (1993) examine the theoretical impact of introducing affirmative action. Unfortunately the theoretical impact of affirmative action is ambiguous. The current paper employs a laboratory experiment to shed empirical light on this theoretical ambiguity.
Resumo:
Nano zero valent iron (NZVI) prepared by reducing natural goethite in hydrogen at 550 °C was used to remove phosphate. The effect of particle size, reaction time, NZVI dose, pH, initial phosphorus concentration, and oxygen amount in reaction system on phosphorus removal was investigated. The characterization of X-ray fluorescence (XRF), X-ray diffraction (XRD), N2 adsorption and desorption (BET analysis), transmission electron microscope (TEM), field emission scanning electron microscope with a energy dispersive X-ray detector (FESEM/EDS) and X-ray photoelectron spectroscopy (XPS) indicated that nanoscale of iron (around 80–150 nm length and 5–30 nm width) was prepared successfully with high dispersion and relative large surface area around 22 m2/g. The results of batch experiments and XPS analysis suggested that this kind of NZVI had a good performance on removal of phosphate (over 99%) despite in slightly acidic media as the initial concentration of P was 5 mg/L. The reason was ascribed to the effective corrosion of this NZVI under the function of proton and dissolved oxygen in spite of the existence of thin passive films.
Resumo:
A high performance liquid chromatographic method for the simultaneous analysis of two flavonoids (iso-vitexin and vitexin), and three indole alkaloids (harmane, harmine, and harmol) was developed. This method was then utilised to quantitate levels of these five constituents in methanolic extracts of Australian Passiflora incarnata. HPLC analysis was performed using a Waters™ Novapak C18 (150 × 4 mm, 4 μm) column, with a gradient solvent system of methanol-water-acetic acid. Detection was achieved by PDA UV (254 nm) and fluorescence (excitation 254 nm, emission 414 nm), utilising the external standard method to obtain quantification.
Resumo:
A high performance liquid chromatographic method for the simultaneous determination of five organochlorine pesticides (aldrin, p,p’-DDT, dieldrin, endrin, and heptachlor) was developed. The method was used to determine the levels of these pesticides in medicinal plant samples. Analysis was carried out using a Merck LiChrospher 100 RP C18 (5 μm) column with a gradient solvent system of acetonitrile-water and PDA UV detection (224 nm). Quantification was carried out by the external standard method. The limit of detection for the utilized method was below the local legal limits (ANZFA) for similar plant materials for all 5 pesticides excepting endrin. Medicinal plant extracts were further analyzed by conventional GC-ECD and GC-NPD means using SPE and GPC cleanup as required.