953 resultados para SEMISIMPLE FINITE-DIMENSIONAL JORDAN SUPERALGEBRA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neural networks are usually curved statistical models. They do not have finite dimensional sufficient statistics, so on-line learning on the model itself inevitably loses information. In this paper we propose a new scheme for training curved models, inspired by the ideas of ancillary statistics and adaptive critics. At each point estimate an auxiliary flat model (exponential family) is built to locally accommodate both the usual statistic (tangent to the model) and an ancillary statistic (normal to the model). The auxiliary model plays a role in determining credit assignment analogous to that played by an adaptive critic in solving temporal problems. The method is illustrated with the Cauchy model and the algorithm is proved to be asymptotically efficient.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We introduce models of heterogeneous systems with finite connectivity defined on random graphs to capture finite-coordination effects on the low-temperature behaviour of finite-dimensional systems. Our models use a description in terms of small deviations of particle coordinates from a set of reference positions, particularly appropriate for the description of low-temperature phenomena. A Born-von Karman-type expansion with random coefficients is used to model effects of frozen heterogeneities. The key quantity appearing in the theoretical description is a full distribution of effective single-site potentials which needs to be determined self-consistently. If microscopic interactions are harmonic, the effective single-site potentials turn out to be harmonic as well, and the distribution of these single-site potentials is equivalent to a distribution of localization lengths used earlier in the description of chemical gels. For structural glasses characterized by frustration and anharmonicities in the microscopic interactions, the distribution of single-site potentials involves anharmonicities of all orders, and both single-well and double-well potentials are observed, the latter with a broad spectrum of barrier heights. The appearance of glassy phases at low temperatures is marked by the appearance of asymmetries in the distribution of single-site potentials, as previously observed for fully connected systems. Double-well potentials with a broad spectrum of barrier heights and asymmetries would give rise to the well-known universal glassy low-temperature anomalies when quantum effects are taken into account. © 2007 IOP Publishing Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Product reliability and its environmental performance have become critical elements within a product's specification and design. To obtain a high level of confidence in the reliability of the design it is customary to test the design under realistic conditions in a laboratory. The objective of the work is to examine the feasibility of designing mechanical test rigs which exhibit prescribed dynamical characteristics. The design is then attached to the rig and excitation is applied to the rig, which then transmits representative vibration levels into the product. The philosophical considerations made at the outset of the project are discussed as they form the basis for the resulting design methodologies. It is attempted to directly identify the parameters of a test rig from the spatial model derived during the system identification process. It is shown to be impossible to identify a feasible test rig design using this technique. A finite dimensional optimal design methodology is developed which identifies the parameters of a discrete spring/mass system which is dynamically similar to a point coordinate on a continuous structure. This design methodology is incorporated within another procedure which derives a structure comprising a continuous element and a discrete system. This methodology is used to obtain point coordinate similarity for two planes of motion, which is validated by experimental tests. A limitation of this approach is that it is impossible to achieve multi-coordinate similarity due to an interaction of the discrete system and the continuous element at points away from the coordinate of interest. During the work the importance of the continuous element is highlighted and a design methodology is developed for continuous structures. The design methodology is based upon distributed parameter optimal design techniques and allows an initial poor design estimate to be moved in a feasible direction towards an acceptable design solution. Cumulative damage theory is used to provide a quantitative method of assessing the quality of dynamic similarity. It is shown that the combination of modal analysis techniques and cumulative damage theory provides a feasible design synthesis methodology for representative test rigs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Given a differentiable action of a compact Lie group G on a compact smooth manifold V , there exists [3] a closed embedding of V into a finite-dimensional real vector space E so that the action of G on V may be extended to a differentiable linear action (a linear representation) of G on E. We prove an analogous equivariant embedding theorem for compact differentiable spaces (∞-standard in the sense of [6, 7, 8]).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

* The authors thank the “Swiss National Science Foundation” for its support.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

∗ Supported by D.G.I.C.Y.T. Project No. PB93-1142

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We introduce the convex cone constituted by the directions of majoration of a quasiconvex function. This cone is used to formulate a qualification condition ensuring the epiconvergence of a sequence of general quasiconvex marginal functions in finite dimensional spaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Theodore Motzkin proved, in 1936, that any polyhedral convex set can be expressed as the (Minkowski) sum of a polytope and a polyhedral convex cone. We have provided several characterizations of the larger class of closed convex sets, Motzkin decomposable, in finite dimensional Euclidean spaces which are the sum of a compact convex set with a closed convex cone. These characterizations involve different types of representations of closed convex sets as the support functions, dual cones and linear systems whose relationships are also analyzed. The obtaining of information about a given closed convex set F and the parametric linear optimization problem with feasible set F from each of its different representations, including the Motzkin decomposition, is also discussed. Another result establishes that a closed convex set is Motzkin decomposable if and only if the set of extreme points of its intersection with the linear subspace orthogonal to its lineality is bounded. We characterize the class of the extended functions whose epigraphs are Motzkin decomposable sets showing, in particular, that these functions attain their global minima when they are bounded from below. Calculus of Motzkin decomposable sets and functions is provided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MSC 2010: 30C60

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary 47A48, Secondary 60G12.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At the jamming transition, amorphous packings are known to display anomalous vibrational modes with a density of states (DOS) that remains constant at low frequency. The scaling of the DOS at higher packing fractions remains, however, unclear. One might expect to find a simple Debye scaling, but recent results from effective medium theory and the exact solution of mean-field models both predict an anomalous, non-Debye scaling. Being mean-field in nature, however, these solutions are only strictly valid in the limit of infinite spatial dimension, and it is unclear what value they have for finite-dimensional systems. Here, we study packings of soft spheres in dimensions 3 through 7 and find, away from jamming, a universal non-Debye scaling of the DOS that is consistent with the mean-field predictions. We also consider how the soft mode participation ratio evolves as dimension increases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The quotient of a finite-dimensional Euclidean space by a finite linear group inherits different structures from the initial space, e.g. a topology, a metric and a piecewise linear structure. The question when such a quotient is a manifold leads to the study of finite groups generated by reflections and rotations, i.e. by orthogonal transformations whose fixed point subspace has codimension one or two. We classify such groups and thereby complete earlier results by M. A. Mikhaîlova from the 70s and 80s. Moreover, we show that a finite group is generated by reflections and) rotations if and only if the corresponding quotient is a Lipschitz-, or equivalently, a piecewise linear manifold (with boundary). For the proof of this statement we show in addition that each piecewise linear manifold of dimension up to four on which a finite group acts by piecewise linear homeomorphisms admits a compatible smooth structure with respect to which the group acts smoothly. This solves a challenge by Thurston and confirms a conjecture by Kwasik and Lee. In the topological category a counterexample to the above mentioned characterization is given by the binary icosahedral group. We show that this is the only counterexample up to products. In particular, we answer the question by Davis of when the underlying space of an orbifold is a topological manifold. As a corollary of our results we generalize a fixed point theorem by Steinberg on unitary reflection groups to finite groups generated by reflections and rotations. As an application thereof we answer a question by Petrunin on quotients of spheres.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis we introduce nuclear dimension and compare it with a stronger form of the completely positive approximation property. We show that the approximations forming this stronger characterisation of the completely positive approximation property witness finite nuclear dimension if and only if the underlying C*-algebra is approximately finite dimensional. We also extend this result to nuclear dimension at most omega. We review interactions between separably acting injective von Neumann algebras and separable nuclear C*-algebras. In particular, we discuss aspects of Connes' work and how some of his strategies have been used by C^*-algebraist to estimate the nuclear dimension of certain classes of C*-algebras. We introduce a notion of coloured isomorphisms between separable unital C*-algebras. Under these coloured isomorphisms ideal lattices, trace spaces, commutativity, nuclearity, finite nuclear dimension and weakly pure infiniteness are preserved. We show that these coloured isomorphisms induce isomorphisms on the classes of finite dimensional and commutative C*-algebras. We prove that any pair of Kirchberg algebras are 2-coloured isomorphic and any pair of separable, simple, unital, finite, nuclear and Z-stable C*-algebras with unique trace which satisfy the UCT are also 2-coloured isomorphic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

International audience

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Doutoramento em Gestão