998 resultados para Roads and highways


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Institute for Transportation (InTrans) at Iowa State University completed work on an in-depth study of crash history on lowvolume, rural roads in Iowa in December 2010. Results indicated that unpaved roads with traffic volumes greater than 100 vehicles per day (vpd) exhibit significantly higher crash frequencies, rates, and densities than any other class of low-volume road examined, paved or unpaved. The total mileage for this class of roadway in Iowa is only about 4,400 miles, spread over 99 counties in the state, which is certainly a manageable number of miles for individual rural agencies. The purpose of this study was to identify and examine several unpaved, local road segments with higher than average crash frequencies, select and undertake potentially-beneficial mitigation, and evaluate the results as time allowed. A variety of low-cost options were considered, including engineering improvements, enhanced efforts by law enforcement, and educational initiatives. Using input, active support, and participation from local agencies and state and Federal safety advocates, the study afforded a unique opportunity to examine useful tools for local rural agencies to utilize in addressing safety on this particular type of roadway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Longitudinal joint quality control/assurance is essential to the successful performance of asphalt pavements and it has received considerable amount of attention in recent years. The purpose of the study is to evaluate the level of compaction at the longitudinal joint and determine the effect of segregation on the longitudinal joint performance. Five paving projects with the use of traditional butt joint, infrared joint heater, edge restraint by milling and modified butt joint with the hot pinch longitudinal joint construction techniques were selected in this study. For each project, field density and permeability tests were made and cores from the pavement were obtained for in-lab permeability, air void and indirect tensile strength. Asphalt content and gradations were also obtained to determine the joint segregation. In general, this study finds that the minimum required joint density should be around 90.0% of the theoretical maximum density based on the AASHTO T166 method. The restrained-edge by milling and butt joint with the infrared heat treatment construction methods both create the joint density higher than this 90.0% limit. Traditional butt joint exhibits lower density and higher permeability than the criterion. In addition, all of the projects appear to have segregation at the longitudinal joint except for the edge-restraint by milling method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Concrete pavements can be designed and constructed to be as quiet as any other conventional pavement type in use today. This report provides an overview of how this can be done—and done consistently. In order to construct a quieter concrete pavement, the texture must have certain fundamental characteristics. While innovative equipment and techniques have shown promise for constructing quieter pavements in the future, quieter concrete pavements are routinely built today all across the United States using the following standard nominal concrete pavement textures: drag, longitudinal tining, diamond grinding, and even, to limited extent, transverse tining. This document is intended to serve as a guide that describes better practices for designing, constructing, and texturing quieter concrete pavements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to investigate the effect of cement paste quality on the concrete performance, particularly fresh properties, by changing the water-to-cementitious materials ratio (w/cm), type and dosage of supplementary cementitious materials (SCM), and airvoid system in binary and ternary mixtures. In this experimental program, a total matrix of 54 mixtures with w/cm of 0.40 and 0.45; target air content of 2%, 4%, and 8%; a fixed cementitious content of 600 pounds per cubic yard (pcy), and the incorporation of three types of SCMs at different dosages was prepared. The fine aggregate-to- total aggregate ratio was fixed at 0.42. Workability, rheology, air-void system, setting time, strength, Wenner Probe surface resistivity, and shrinkage were determined. The effects of paste variables on workability are more marked at the higher w/cm. The compressive strength is strongly influenced by the paste quality, dominated by w/cm and air content. Surface resistivity is improved by inclusion of Class F fly ash and slag cement, especially at later ages. Ternary mixtures performed in accordance with their ingredients. The data collected will be used to develop models that will be part of an innovative mix proportioning procedure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Supplementary cementitious materials (SCM) have become common parts of modern concrete practice. The blending of two or three cementitious materials to optimize durability, strength, or economics provides owners, engineers, materials suppliers, and contractors with substantial advantages over mixtures containing only portland cement. However, these advances in concrete technology and engineering have not always been adequately captured in specifications for concrete. Users need specific guidance to assist them in defining the performance requirements for a concrete application and the selection of optimal proportions of the cementitious materials needed to produce the required durable concrete. The fact that blended cements are currently available in many regions increases options for mixtures and thus can complicate the selection process. Both Portland and blended cements have already been optimized by the manufacturer to provide specific properties (such as setting time, shrinkage, and strength gain). The addition of SCMs (as binary, ternary, or even more complex mixtures) can alter these properties, and therefore has the potential to impact the overall performance and applications of concrete. This report is the final of a series of publications describing a project aimed at addressing effective use of ternary systems. The work was conducted in several stages and individual reports have been published at the end of each stage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This guide specification and commentary for concrete pavements presents current state-of-the art thinking with respect to materials and mixture selection, proportioning, and acceptance. This document takes into account the different environments, practices, and materials in use across the United States and allows optional inputs for local application. The following concrete pavement types are considered: jointed plain concrete pavement, the most commonly used pavement type and may be doweled or non-doweled at transverse joints; and continuously reinforced concrete pavement, typically constructed without any transverse joints, typically used for locations with high truck traffic loads and/or poor support conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A guide specification and commentary have been prepared that lay out current state-of-the art thinking with respect to materials and mixture selection, proportioning, and acceptance. These documents take into account the different environments, practices, and materials in use across the US and allow optional inputs for local application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For years, specifications have focused on the water to cement ratio (w/cm) and strength of concrete, despite the majority of the volume of a concrete mixture consisting of aggregate. An aggregate distribution of roughly 60% coarse aggregate and 40% fine aggregate, regardless of gradation and availability of aggregates, has been used as the norm for a concrete pavement mixture. Efforts to reduce the costs and improve sustainability of concrete mixtures have pushed owners to pay closer attention to mixtures with a well-graded aggregate particle distribution. In general, workability has many different variables that are independent of gradation, such as paste volume and viscosity, aggregate’s shape, and texture. A better understanding of how the properties of aggregates affect the workability of concrete is needed. The effects of aggregate characteristics on concrete properties, such as ability to be vibrated, strength, and resistivity, were investigated using mixtures in which the paste content and the w/cm were held constant. The results showed the different aggregate proportions, the maximum nominal aggregate sizes, and combinations of different aggregates all had an impact on the performance in the strength, slump, and box test.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Concrete will suffer frost damage when saturated and subjected to freezing temperatures. Frost-durable concrete can be produced if a specialized surfactant, also known as an air-entraining admixture (AEA), is added during mixing to stabilize microscopic air voids. Small and well-dispersed air voids are critical to produce frost-resistant concrete. Work completed by Klieger in 1952 found the minimum volume of air required to consistently ensure frost durability in a concrete mixture subjected to rapid freezing and thawing cycles. He suggested that frost durability was provided if 18 percent air was created in the paste. This is the basis of current practice despite the tests being conducted on materials that are no longer available using tests that are different from those in use today. Based on the data presented, it was found that a minimum air content of 3.5 percent in the concrete and 11.0 percent in the paste should yield concrete durable in the ASTM C 666 with modern AEAs and low or no lignosulfonate water reducers (WRs). Limited data suggests that mixtures with a higher dosage of lignosulfonate will need about 1 percent more air in the concrete or 3 percent more air in the paste for the materials and procedures used. A spacing factor of 0.008 in. was still found to be necessary to provide frost durability for the mixtures investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Any transportation infrastructure system is inherently concerned with durability and performance issues. The proportioning and uniformity control of concrete mixtures are critical factors that directly affect the longevity and performance of the portland cement concrete pavement systems. At present, the only means available to monitor mix proportions of any given batch are to track batch tickets created at the batch plant. However, this does not take into account potential errors in loading materials into storage silos, calibration errors, and addition of water after dispatch. Therefore, there is a need for a rapid, cost-effective, and reliable field test that estimates the proportions of as-delivered concrete mixtures. In addition, performance based specifications will be more easily implemented if there is a way to readily demonstrate whether any given batch is similar to the proportions already accepted based on laboratory performance testing. The goal of the present research project is to investigate the potential use of a portable x-ray fluorescence (XRF) technique to assess the proportions of concrete mixtures as they are delivered. Tests were conducted on the raw materials, paste and mortar samples using a portable XRF device. There is a reasonable correlation between the actual and calculated mix proportions of the paste samples, but data on mortar samples was less reliable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Highway construction is among the most dangerous industries in the US. Internal traffic control design, along with how construction equipment and vehicles interact with the traveling public, have a significant effect on how safe a highway construction work zone can be. An integrated approach was taken to research work-zone safety issues and mobility, including input from many personnel, ranging from roadway designers to construction laborers and equipment operators. The research team analyzed crash data from Iowa work-zone incident reports and Occupational Safety and Health Administration data for the industry in conjunction with the results of personal interviews, a targeted work-zone ingress and egress survey, and a work-zone pilot project.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 2011 Missouri River flooding caused significant damage to many geo-infrastructure systems including levees, bridge abutments/foundations, paved and unpaved roadways, culverts, and embankment slopes in western Iowa. The flooding resulted in closures of several interchanges along Interstate 29 and of more than 100 miles of secondary roads in western Iowa, causing severe inconvenience to residents and losses to local businesses. The main goals of this research project were to assist county and city engineers by deploying and using advanced technologies to rapidly assess the damage to geo-infrastructure and develop effective repair and mitigation strategies and solutions for use during future flood events in Iowa. The research team visited selected sites in western Iowa to conduct field reconnaissance, in situ testing on bridge abutment backfills that were affected by floods, flooded and non-flooded secondary roadways, and culverts. In situ testing was conducted shortly after the flood waters receded, and several months after flooding to evaluate recovery and performance. Tests included falling weight deflectometer, dynamic cone penetrometer, three-dimensional (3D) laser scanning, ground penetrating radar, and hand auger soil sampling. Field results indicated significant differences in roadway support characteristics between flooded and non-flooded areas. Support characteristics in some flooded areas recovered over time, while others did not. Voids were detected in culvert and bridge abutment backfill materials shortly after flooding and several months after flooding. A catalog of field assessment techniques and 20 potential repair/mitigation solutions are provided in this report. A flow chart relating the damages observed, assessment techniques, and potential repair/mitigation solutions is provided. These options are discussed for paved/unpaved roads, culverts, and bridge abutments, and are applicable for both primary and secondary roadways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objectives of the project were to develop methodologies for (i) prediction and measurement of the magnitude of pressure which develops within pores of saturated porous materials upon freezing, (ii) determination of pore structure (pore size distribution) of porous materials; (iii) prediction and measurement of the rate with which pore ice grows; and (iv) prediction of frost susceptibility of porous materials with varying pore structures. As with all research endeavors solution of one problem leads to another one and this project was no exception. Emergence of new problems and the measures taken as the work progressed were discussed in progress reports submitted to the board. This final report will discuss only the conclusive finds and suggest measures to be taken for future investigations. The theory discussed in the proposal is not repeated in this report for the sake of brevity. However, the paper published as part of this project containing the theory is attached as Appendix I for the reader interested in the theory. In conformity with the objectives, this report consists of four parts. In accordance with the project contract two ice porosimeters were built and one will be delivered to the Iowa DOT after training of a DOT technician under the supervision of Mr. Wendell Dubberke with assistance from ISU researchers. During the training period debugging and further improvements in software will continue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report provides techniques and procedures for estimating the probable magnitude and frequency of floods at ungaged sites on Iowa streams. Physiographic characteristics were used to define the boundaries of five hydrologic regions. Regional regression equations that relate the size of the drainage area to flood magnitude are defined for estimating peak discharges having specified recurrence intervals of 2, 5, 10, 25, 50, and 100 years. Regional regression equations are applicable to sites on streams that have drainage areas ranging from 0.04 to 5,150 square miles provided that the streams are not affected significantly by regulation upstream from the sites and that the drainage areas upstream from the sites are not mostly urban areas. Flood-frequency characteristics for the mainstems of selected rivers are presented in graphs as a function of drainage area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to determine the practicality and effectiveness of using submerged vanes ("Iowa Vanes") to control bank erosion in a bend of East Nishnabotna River, Iowa. The vane system was constructed during the summer of 1985. It functions by eliminating, or reducing, the centrifugally induced helical motion of the flow in the bend, which is the root cause of bank undermining. The system was monitored over a 2-year period, from September 1985 to October 1987. Two surveys were conducted in the spring of 1986 in which data were taken of depths and velocities throughout the bend and of water-surface slope. The movement of the bank was determined from aerial photos and from repeated measurements of the vane-to-bank distance. The bankfull scour depths and velocities along the bank have been reduced significantly; and the movement of the bank has been stopped or considerably reduced. The improvements were obtained without changing the energy slope of the channel. Areas of design improvements were identified.