803 resultados para Riparian reforestation
Resumo:
Government agencies responsible for riparian environments are assessing the utility of remote sensing for mapping and monitoring environmental health indicators. The objective of this work was to evaluate IKONOS and Landsat-7 ETM+ imagery for mapping riparian vegetation health indicators in tropical savannas for a section of Keelbottom Creek, Queensland, Australia. Vegetation indices and image texture from IKONOS data were used for estimating percentage canopy cover (r2=0.86). Pan-sharpened IKONOS data were used to map riparian species composition (overall accuracy=55%) and riparian zone width (accuracy within 4 m). Tree crowns could not be automatically delineated due to the lack of contrast between canopies and adjacent grass cover. The ETM+ imagery was suited for mapping the extent of riparian zones. Results presented demonstrate the capabilities of high and moderate spatial resolution imagery for mapping properties of riparian zones, which may be used as riparian environmental health indicators
Resumo:
This paper reports the results of a survey of north Queensland landholder attitudes with respect to a number of issues relating to participation in forestry. The survey explored the reasons why landholders plant trees, perceived obstacles to greater farm forestry, and attitudes to tree planting programs such as the Community Rainforest Reforestation Program (CRRP) and Private Joint Venture Scheme (PJVS). The results of the survey are discussed in the context of possible policy prescriptions that can be made at local, state and federal government levels to facilitate greater tree planting in the region. Many of the problems faced by local landholders are shared by landholders in other parts of Australia and throughout the world. This survey can thus serve as a case study, providing information on a number of issues concerning small-scale forestry policies that are of general relevance to the development of farm forestry programs.
Resumo:
A large number of socio-economic research projects have been conducted in north Queensland which have drawn on observations from, or been otherwise inspired by, the Community Rainforest Reforestation Program (CRRP). The research may be considered under the headings of financial performance of farm-grown timber, externalities (or environmental values), impediments to tree planting on farms, analysis of the timber supply chain including timber marketing, and facilitation of forest industry development. This paper summarises a variety of insights generated by the research, on small-scale forestry based on native tree species and on policy measures which may be adopted to promote tree growing on farms in tropical north Queensland.
Resumo:
Government agencies responsible for riparian environments are assessing the combined utility of field survey and remote sensing for mapping and monitoring indicators of riparian zone condition. The objective of this work was to compare the Tropical Rapid Appraisal of Riparian Condition (TRARC) method to a satellite image based approach. TRARC was developed for rapid assessment of the environmental condition of savanna riparian zones. The comparison assessed mapping accuracy, representativeness of TRARC assessment, cost-effectiveness, and suitability for multi-temporal analysis. Two multi-spectral QuickBird images captured in 2004 and 2005 and coincident field data covering sections of the Daly River in the Northern Territory, Australia were used in this work. Both field and image data were processed to map riparian health indicators (RHIs) including percentage canopy cover, organic litter, canopy continuity, stream bank stability, and extent of tree clearing. Spectral vegetation indices, image segmentation and supervised classification were used to produce RHI maps. QuickBird image data were used to examine if the spatial distribution of TRARC transects provided a representative sample of ground based RHI measurements. Results showed that TRARC transects were required to cover at least 3% of the study area to obtain a representative sample. The mapping accuracy and costs of the image based approach were compared to those of the ground based TRARC approach. Results proved that TRARC was more cost-effective at smaller scales (1-100km), while image based assessment becomes more feasible at regional scales (100-1000km). Finally, the ability to use both the image and field based approaches for multi-temporal analysis of RHIs was assessed. Change detection analysis demonstrated that image data can provide detailed information on gradual change, while the TRARC method was only able to identify more gross scale changes. In conclusion, results from both methods were considered to complement each other if used at appropriate spatial scales.
Resumo:
Non peer reviewed
Resumo:
As a result of a floristic survey carried out in riparian habitats of northern Spain, new chorological data are provided for 9 alien and 6 native plant species. Some species are reported for the first time at regional scale, such as Carex strigosa, Helianthus x laetiflorus and Persicaria pensylvanica in Cantabria. Also noteworthy is the finding of naturalised populations of the North American grass Muhlenbergia schreberi at the Urumea river basin, which represents the second reference for the Iberian Peninsula.
Resumo:
Reforestation of agricultural land with mixed-species environmental plantings (native trees and shrubs) can contribute to mitigation of climate change through sequestration of carbon. Although soil carbon sequestration following reforestation has been investigated at site- and regional-scales, there are few studies across regions where the impact of a broad range of site conditions and management practices can be assessed. We collated new and existing data on soil organic carbon (SOC, 0–30 cm depth, N = 117 sites) and litter (N = 106 sites) under mixed-species plantings and an agricultural pair or baseline across southern and eastern Australia. Sites covered a range of previous land uses, initial SOC stocks, climatic conditions and management types. Differences in total SOC stocks following reforestation were significant at 52% of sites, with a mean rate of increase of 0.57 ± 0.06 Mg C ha−1 y−1. Increases were largely in the particulate fraction, which increased significantly at 46% of sites compared with increases at 27% of sites for the humus fraction. Although relative increase was highest in the particulate fraction, the humus fraction was the largest proportion of total SOC and so absolute differences in both fractions were similar. Accumulation rates of carbon in litter were 0.39 ± 0.02 Mg C ha−1 y−1, increasing the total (soil + litter) annual rate of carbon sequestration by 68%. Previously-cropped sites accumulated more SOC than previously-grazed sites. The explained variance differed widely among empirical models of differences in SOC stocks following reforestation according to SOC fraction and depth for previously-grazed (R2 = 0.18–0.51) and previously-cropped (R2 = 0.14–0.60) sites. For previously-grazed sites, differences in SOC following reforestation were negatively related to total SOC in the pasture. By comparison, for previously-cropped sites, differences in SOC were positively related to mean annual rainfall. This improved broad-scale understanding of the magnitude and predictors of changes in stocks of soil and litter C following reforestation is valuable for the development of policy on carbon markets and the establishment of future mixed-species environmental plantings.
Resumo:
Tropical forests have decreased drastically especially in the Peruvian Amazon. In Peru deforestation is caused especially by migrant people; building of houses and infrastructure, clearing land for agricultural purposes and illegal logging and mining. Deforestation results in hindering ecosystem vitality, boosting climate change and decreasing livelihood possibilities. As a counterpoint to cutting down trees there is reforestation, which refers to re-establishment of forest cover. Deforestation and reforestation can be analysed in the light of Forest Transition theory. According to it, due to economic growth, the amount forest cover first diminishes but then starts to increase as the economy in general strengthens. Thus, the research framework is set to this theory. In this study the focus is on analysing socioeconomically sustainable reforestation possibilities in the community of Tingana, Peru. It is situated in a municipal conservation area around which deforestation has been heavy. Land cover change is analysed from LandsatTM satellite images covering a 15 year time period, 1995–2010, in the surroundings of the study area. Semi-structured interviews have been done with a sample size of 25 people and shed light on the perspectives on forests, reforestation and economical activities. The synthesis created from the two methods gives information about the possibilities to enforce reforestation in Tingana and the phase of forest transition in the area. The results show that forest cover has decreased around the surroundings of Tingana leaving the conservation area isolated from larger forest areas. Knowing that forest cover has also decreased inside the conservation area due to agricultural expansion it is certain that fragmentation harms biodiversity causing changes in local climate, which can have knock-on effects for farming and local livelihoods. Therefore reforestation is welcomed when it ensures both conservation and financial benefits and when carried out on locals’ terms. Regarding conservation and incomes the best option would be to plant native timber species together with fruit production species to create agroforestry systems. Economically the community should aim towards an economy that relies on ecotourism as it already practiced in the area. Reforestation could increase ecotourism, which then could in turn increase reforestation via revenues. Regarding forest transition it is likely that forest re-establishment will occur if reforestation along with ecotourism is implemented on long time scale.
Resumo:
Tese (doutorado)—Universidade de Brasília, Instituto de Ciências Humanas, Departamento de Geografia, Programa de Pós Graduação em Geografia, 2015.
Resumo:
Policy and decision makers dealing with environmental conservation and land use planning often require identifying potential sites for contributing to minimize sediment flow reaching riverbeds. This is the case of reforestation initiatives, which can have sediment flow minimization among their objectives. This paper proposes an Integer Programming (IP) formulation and a Heuristic solution method for selecting a predefined number of locations to be reforested in order to minimize sediment load at a given outlet in a watershed. Although the core structure of both methods can be applied for different sorts of flow, the formulations are targeted to minimization of sediment delivery. The proposed approaches make use of a Single Flow Direction (SFD) raster map covering the watershed in order to construct a tree structure so that the outlet cell corresponds to the root node in the tree. The results obtained with both approaches are in agreement with expert assessments of erosion levels, slopes and distances to the riverbeds, which in turn allows concluding that this approach is suitable for minimizing sediment flow. Since the results obtained with the IP formulation are the same as the ones obtained with the Heuristic approach, an optimality proof is included in the present work. Taking into consideration that the heuristic requires much less computation time, this solution method is more suitable to be applied in large sized problems.