911 resultados para Rest time of seeds
Resumo:
Seasonal patterns of singing activity of male birds have been thoroughly studied, but little is known about how those patterns vary with time of day. Here, we censused mated and unmated male Nightingales (Luscinia megarhynchos) at four different hours of the day throughout the breeding cycle. In unmated males, singing activity increased until the young hatched in their neighborhood, and the seasonal variation was similar at each of the four hours of the day. In mated males, however, the seasonal patterns of singing activity differed between hours of the day. In morning (about the hour of egg-laying) and during the dusk chorus, the singing activity of mated males was strongly influenced by the females' reproductive state: singing activity was low before egg-laying and during incubation, but high during the egg-laying period. In the dawn chorus, however, singing activity showed a similar seasonal pattern in mated and unmated males and was high until late stages of the breeding cycle. Our results suggest that the social context influences singing behavior to a varying degree across the season, and that this variation also depends on time of day. The hour of data collection thus is an important but often neglected factor when seasonal changes of singing activity are studied.
Resumo:
We investigate the time evolution of entanglement in a process where a mobile particle is scattered by static spins. We show that entanglement increases monotonically during a transient and then saturates to a steady-state value. For a quasimonochromatic mobile particle, the transient time depends only on the group velocity and width of the incoming wave packet and is insensitive to the interaction strength and spin number of the scattering particles. These features do not depend on the interaction model and can be seen in various physical settings.
Resumo:
The potential for coupling technologies to deliver new, improved forms of bioanalysis is still in its infancy. We review a number of examples in which coupling has been successful, with special emphasis on combining surface-plasmon-resonance biosensors with mass spectrometry. We give an overview of current progress towards combining biosensor-based bioanalysis with chemical analysis for confirmation of paralytic shellfish poisons that are marine toxins. This comprehensive approach could be an alternative to the official methods currently used (e.g., animal testing and high-performance liquid chromatography with fluorescence detection) and could serve as a model for many more such applications. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
A Time of flight (ToF) mass spectrometer suitable in terms of sensitivity, detector response and time resolution, for application in fast transient Temporal Analysis of Products (TAP) kinetic catalyst characterization is reported. Technical difficulties associated with such application as well as the solutions implemented in terms of adaptations of the ToF apparatus are discussed. The performance of the ToF was validated and the full linearity of the specific detector over the full dynamic range was explored in order to ensure its applicability for the TAP application. The reported TAP-ToF setup is the first system that achieves the high level of sensitivity allowing monitoring of the full 0-200 AMU range simultaneously with sub-millisecond time resolution. In this new setup, the high sensitivity allows the use of low intensity pulses ensuring that transport through the reactor occurs in the Knudsen diffusion regime and that the data can, therefore, be fully analysed using the reported theoretical TAP models and data processing.
Resumo:
Moisture is a well documented, and crucial, control on the nature of stone decay. The term time of wetness has frequently been adopted to describe how long a stone block is wet, with a view to understanding the impact of this on decay processes. Although this term has proved conceptually useful, it has been used in different ways, by different groups to mean mean quite different things. For example, the time of wetness for a stone block surface (the traditional understanding) may be quite different from that of a block interior, controlled by the different dynamics of wetting and drying in those zones. Thus, surface wetting will occur regularly (sometimes swiftly followed by drying, depending on the time of year), with block interior wetting requiring the accumulation of surface moisture to penetrate to depth (more likely in autumn and winter months), and drying out much more slowly. This relatively new but important perspective, framed in the context of climate change, is crucial to understanding the length of time stone may remain damp at depth following a period of prolonged precipitation. The nature and speed of drying is also relevant in quantifying time of wetness of both surfaces and the interior of building stones.
These ideas related to time of wetness have implications for decay processes, specifically how a prolonged time of deep wetness may re-focus the emphasis of salt weathering in natural building stones toward chemical action. Literature on chemical change is discussed, suggesting that chemical change occurring during periods of prolonged wetness is likely to be significant in itself, with implications for weakening the stone (in terms of, for example, cement dissolution or grain boundary weakening) and exacerbating physical damage from salt crystallisation when blocks finally dry out.
Resumo:
his paper proposes an optimisation-based method to calculate the critical slip (speed) of dynamic stability and critical clearing time (CCT) of a self-excited induction generator (SEIG). A simple case study using the Matlab/Simulink environment has been included to exemplify the optimisation method. Relationships between terminal voltage, critical slip and reactance of transmission line, CCT and inertial constant have been determined, based on which analysis of impact on relaying setting has been further conducted for another simulation case.