999 resultados para Resource Extraction
Resumo:
A meeting was convened in Canberra, Australia, at the request of the Australian Drug Evaluation Committee (ADEC), on December 3-4, 1997 to discuss the role of population pharmacokinetics and pharmacodynamics in drug evaluation and development. The ADEC was particularly concerned about registration of drugs in the pediatric age group. The population approach could be used more often than is currently the case in pharmacokinetic and pharmacodynamic studies to provide valuable information for the safe and effective use of drugs in neonates, infants, and children. The meeting ultimately broadened to include discussion about other subgroups. The main conclusions of the meeting were: 1. The population approach, pharmacokinetic and pharmacodynamic analysis, is a valuable tool both for drug registration purposes and for optimal dosing of drugs in specific groups of patients, 2. Population pharmacokinetic and pharmacodynamic studies are able to fill in the gaps' in registration of drugs, for example, to provide information on optimal pediatric dosing. Such studies provide a basis for enhancing product information to improve rational prescribing, 3. Expertise is required to perform the population studies and expertise, with a clinical perspective, is also required to evaluate such studies if they are to be submitted as part of a drug registration dossier Such expertise is available in the Australasian region and is increasing. Centers of excellence with the appropriate expertise to advise and assist should be encouraged to develop and grow in the region, 4. The use of the population approach by the pharmaceutical industry needs to be encouraged to provide valuable information not obtainable by other techniques. The acceptance of population pharmacokinetic and pharmacodynamic analyses by regulatory agencies also needs to be encouraged, and 5. Development of the population approach to pharmacokinetics and pharmacodynamics is needed from a public health perspective to ensure that all available information is collected and used to improve the way drugs are used. This important endeavor needs funding and support at the local and international levels.
Resumo:
In previous parts of this study we developed procedures for the high-efficiency chemical extraction of soluble and insoluble protein from intact Escherichia coli cells. Although high yields were obtained, extraction of recombinant protein directly from cytoplasmic inclusion bodies led to low product purity due to coextraction of soluble contaminants. In this work, a two-stage procedure for the selective extraction of recombinant protein at high efficiency and high purity is reported. In the first stage, inclusion-body stability is promoted by the addition of 15 mM 2-hydroxyethyldisulfide (2-HEDS), also known as oxidized P-mercaptoethanol, to the permeabil ization buffer (6 M urea + 3 mM ethylenediaminetetra-acetate [EDTA]). 2-HEDS is an oxidizing agent believed to promote disulfide bond formation, rendering the inclusion body resistant to solubilization in 6 M urea. Contaminating proteins are separated from the inclusion-body fraction by centrifugation. in the second stage, disulfide bonds are readily eliminated by including reducing agent (20 mM dithiothreitol [DTT]) into the permeabilization buffer. Extraction using this selective two-stage process yielded an 81% (w/w) recovery of the recombinant protein Long-R-3-IGF-I from inclusion bodies located in the cytoplasm of intact E. coli, at a purity of 46% (w/w). This was comparable to that achieved by conventional extraction (mechanical disruption followed by centrifugation and solubilization). A pilot-scale procedure was also demonstrated using a stirred reactor and diafiltration. This is the first reported study that achieves both high extraction efficiency and selectivity by the chemical treatment of cytoplasmic inclusion bodies in intact bacterial cells. (C) 1999 John Wiley & Sons, Inc.
Resumo:
An automated method for extracting brain volumes from three commonly acquired three-dimensional (3D) MR images (proton density, T1 weighted, and T2-weighted) of the human head is described. The procedure is divided into four levels: preprocessing, segmentation, scalp removal, and postprocessing. A user-provided reference point is the sole operator-dependent input required, The method's parameters were first optimized and then fixed and applied to 30 repeat data sets from 15 normal older adult subjects to investigate its reproducibility. Percent differences between total brain volumes (TBVs) for the subjects' repeated data sets ranged from .5% to 2.2%. We conclude that the method is both robust and reproducible and has the potential for wide application.
Resumo:
A mathematical model is presented that describes a system where two consumer species compete exploitatively for a single renewable resource. The resource is distributed in a patchy but homogeneous environment; that is, all patches are intrinsically identical. The two consumer species are referred to as diggers and grazers, where diggers deplete the resource within a patch to lower densities than grazers. We show that the two distinct feeding strategies can produce a heterogeneous resource distribution that enables their coexistence. Coexistence requires that grazers must either move faster than diggers between patches or convert the resources to population growth much more efficiently than diggers. The model shows that the functional form of resource renewal within a patch is also important for coexistence. These results contrast with theory that considers exploitation competition for a single resource when the resource is assumed to be well mixed throughout the system.
Resumo:
In this study we demonstrate a new in-fermenter chemical extraction procedure that degrades the cell wall of Escherichia coli and releases inclusion bodies (IBs) into the fermentation medium. We then prove that cross-flow microfiltration can be used to remove 91% of soluble contaminants from the released IBs. The extraction protocol, based on a combination of Triton X-100, EDTA, and intracellular T7 lysozyme, effectively released most of the intracellular soluble content without solubilising the IBs. Cross-flow microfiltration using a 0.2 mum ceramic membrane successfully recovered the granulocyte macrophagecolony stimulating factor (GM-CSF) IBs with removal of 91% of the soluble contaminants and virtually no loss of IBs to the permeate. The filtration efficiency, in terms of both flux and transmission, was significantly enhanced by infermenter Benzonase(R) digestion of nucleic acids following chemical extraction. Both the extraction and filtration methods exerted their efficacy directly on a crude fermentation broth, eliminating the need for cell recovery and re-suspension in buffer. The processes demonstrated here can all be performed using just a fermenter and a single cross-flow filtration unit, demonstrating a high level of process intensification. Furthermore, there is considerable scope to also use the microfiltration system to subsequently solubilise the IBs, to separate the denatured protein from cell debris, and to refold the protein using diafiltration. In this way refolded protein can potentially be obtained, in a relatively pure state, using only two unit operations. (C) 2004 Wiley Periodicals Inc.
Resumo:
Overcommitment of development capacity or development resource deficiencies are important problems in new product development (NPD). Existing approaches to development resource planning have largely neglected the issue of resource magnitude required for NPD. This research aims to fill the void by developing a simple higher-level aggregate model based on an intuitive idea: The number of new product families that a firm can effectively undertake is bound by the complexity of its products or systems and the total amount of resources allocated to NPD. This study examines three manufacturing companies to verify the proposed model. The empirical results confirm the study`s initial hypothesis: The more complex the product family, the smaller the number of product families that are launched per unit of revenue. Several suggestions and implications for managing NPD resources are discussed, such as how this study`s model can establish an upper limit for the capacity to develop and launch new product families.
Resumo:
Background: A major goal in the post-genomic era is to identify and characterise disease susceptibility genes and to apply this knowledge to disease prevention and treatment. Rodents and humans have remarkably similar genomes and share closely related biochemical, physiological and pathological pathways. In this work we utilised the latest information on the mouse transcriptome as revealed by the RIKEN FANTOM2 project to identify novel human disease-related candidate genes. We define a new term patholog to mean a homolog of a human disease-related gene encoding a product ( transcript, anti-sense or protein) potentially relevant to disease. Rather than just focus on Mendelian inheritance, we applied the analysis to all potential pathologs regardless of their inheritance pattern. Results: Bioinformatic analysis and human curation of 60,770 RIKEN full-length mouse cDNA clones produced 2,578 sequences that showed similarity ( 70 - 85% identity) to known human-disease genes. Using a newly developed biological information extraction and annotation tool ( FACTS) in parallel with human expert analysis of 17,051 MEDLINE scientific abstracts we identified 182 novel potential pathologs. Of these, 36 were identified by computational tools only, 49 by human expert analysis only and 97 by both methods. These pathologs were related to neoplastic ( 53%), hereditary ( 24%), immunological ( 5%), cardio-vascular (4%), or other (14%), disorders. Conclusions: Large scale genome projects continue to produce a vast amount of data with potential application to the study of human disease. For this potential to be realised we need intelligent strategies for data categorisation and the ability to link sequence data with relevant literature. This paper demonstrates the power of combining human expert annotation with FACTS, a newly developed bioinformatics tool, to identify novel pathologs from within large-scale mouse transcript datasets.
Resumo:
A sensitive and reproducible stir bar-sorptive extraction and high-performance liquid chromatography-UV detection (SBSE/HPLC-UV) method for therapeutic drug monitoring of carbamazepine, carbamazepine-10,11-epoxide, phenytoin and phenobarbital in plasma samples is described and compared with a liquid:liquid extraction (LLE/HPLC-UV) method. Important factors in the optimization of SBSE efficiency such as pH, extraction time and desorption conditions (solvents, mode magnetic stir, mode ultrasonic stir, time and number of steps) assured recoveries ranging from 72 to 86%, except for phenytoin (62%). Separation was obtained using a reverse phase C-18 column with UV detection (210 nm). The mobile phase consisted of water: acetonitrile (78:22, v/v). The SBSE/HPLC-UV method was linear over a working range of 0.08-40.0 mu g mL(-1) for carbamazepine, carbamazepine-10,11-epoxide and phenobarbital and 0.125-40.0 mu g mL(-1) for phenytoin, The intra-assay and inter-assay precision and accuracy were studied at three concentrations (1.0, 4.0 and 20.0 mu g mL(-1)). The intra-assay coefficients of variation (CVs) for all compounds were less than 8.8% and all inter-CVs were less than 10%. Limits of quantification were 0.08 mu g mL(-1) for carbamazepine, carbamazepine-10,11-epoxide and phenobarbital and 0.125 mu g mL(-1) for phenytoin. No interference of the drugs normally associated with antiepileptic drugs was observed. Based on figures of merit results, the SBSE/HPLC-UV proved adequate for antiepileptic drugs analyses from therapeutic levels. This method was successfully applied to the analysis of real samples and was as effective as the LLE/HPLC-UV method. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
A sensitive and precise stir bar sorptive extraction (SBSE) combined with LC (SBSE/LC) analysis is described for simultaneous determination of methyl, ethyl, propyl, and butyl parabens in commercial cosmetic products in agreement with the European Union Cosmetics Directive 76/768/EEC. Important factors in the optimization of SB SE efficiency are discussed, such as time and temperature of extraction, pH, and ionic strength of the sample, matrix effects, and liquid desorption conditions by different modes (magnetic stirring, ultrasonic). The LOQs of the SBSE/LC method ranged from 30 to 200 ng/mg, with linear response over a dynamic range, from the LOQ to 2.5 mu g/mg, with a coefficient of determination higher than 0.993. The interday precision of the SBSE/LC method presented a coefficient of variation lower than 5%. The effectiveness of the proposed method was proven for analysis of commercial cosmetic products such as body creams, antiperspirant creams, and sunscreens.
Resumo:
A sensitive and reproducible stir bar-sorptive extraction and high performance liquid chromatography-UV detection (SBSE/HPLC-UV) method for therapeutic drug monitoring of rifampicin in plasma samples is described and compared with a liquid:liquid extraction (LLE/HPLC-UV) method. This miniaturized method can result in faster analysis, higher sample throughput, lower solvent consumption and less workload per sample while maintaining or even improving sensitivity. Important factors in the optimization of SBSE efficiency such as pH, temperature, extraction time and desorption conditions (solvents, mode magnetic stir, mode ultrasonic stir, time and number of steps) were optimized recoveries ranging from 75 to 80%. Separation was obtained using a reverse phase C(8) column with UV detection (254 nm). The mobile phase consisted of methanol:0.25 N sodium acetate buffer, pH 5.0 (58:42, v/v). The SBSE/HPLC-UV method was linear over a working range of 0.125-50.0 mu g mL(-1). The intra-assay and inter-assay precision and accuracy were studied at three concentrations (1.25, 6.25 and 25.0 mu g mL(-1)). The intra-assay coefficients of variation (CVs) for all compounds were less than 10% and all inter-CVs were less than 10%. Limits of quantification were 0.125 mu g mL(-1). Stability studies showed rifampicin was stable in plasma for 12 h after thawing; the samples were also stable for 24 h after preparation. Based on the figures of merit results, the SBSE/HPLC-UV proved to be adequate to the rifampicin analyses from therapeutic to toxic levels. This method was successfully applied to the analysis of real samples and was as effective as the LLE/HPLC-UV method. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Extraction of intracellular protein from Escherichia coli is traditionally achieved by mechanical disruption. A chemical treatment that destroys the integrity of the bacterial cell wall and could provide an alternative technique is examined in this study. Treatment with a combination of the chelating agent ethylenediaminetetraacetate (EDTA) (greater than 0.3 mM) and the chaotropic agent urea (6 M) is highly effective at releasing protein from uninduced E. coli. The 6 M urea in the presence of 3 mM EDTA can release cytoplasmic protein from both logarithmic-phase and stationary-phase E. coli cells at levels equivalent to mechanical disruption. The concentrations of the two chemical agents were the major variables affecting the maximum levels of protein release. Several minor variables and interactions were also identified. The kinetics of protein release is first order. For 2, 4, and 6 M urea with 3 mM EDTA, the time constant is approximately 2.5 min independent of urea concentration. Kinetics for 3 mM EDTA without urea is considerably slower, with a time constant of 12.3 min. (C) 1997 John Wiley & Sons, Inc.
Resumo:
Computer modelling has shown that electrical characteristics of individual pixels may be extracted from within multiple-frequency electrical impedance tomography (MFEIT) images formed using a reference data set obtained from a purely resistive, homogeneous medium. In some applications it is desirable to extract the electrical characteristics of individual pixels from images where a purely resistive, homogeneous reference data set is not available. One such application of the technique of MFEIT is to allow the acquisition of in vivo images using reference data sets obtained from a non-homogeneous medium with a reactive component. However, the reactive component of the reference data set introduces difficulties with the extraction of the true electrical characteristics from the image pixels. This study was a preliminary investigation of a technique to extract electrical parameters from multifrequency images when the reference data set has a reactive component. Unlike the situation in which a homogenous, resistive data set is available, it is not possible to obtain the impedance and phase information directly from the image pixel values of the MFEIT images data set, as the phase of the reactive reference is not known. The method reported here to extract the electrical characteristics (the Cole-Cole plot) initially assumes that this phase angle is zero. With this assumption, an impedance spectrum can be directly extracted from the image set. To obtain the true Cole-Cole plot a correction must be applied to account for the inherent rotation of the extracted impedance spectrum about the origin, which is a result of the assumption. This work shows that the angle of rotation associated with the reactive component of the reference data set may be determined using a priori knowledge of the distribution of frequencies of the Cole-Cole plot. Using this angle of rotation, the true Cole-Cole plot can be obtained from the impedance spectrum extracted from the MFEIT image data set. The method was investigated using simulated data, both with and without noise, and also for image data obtained in vitro. The in vitro studies involved 32 logarithmically spaced frequencies from 4 kHz up to 1 MHz and demonstrated that differences between the true characteristics and those of the impedance spectrum were reduced significantly after application of the correction technique. The differences between the extracted parameters and the true values prior to correction were in the range from 16% to 70%. Following application of the correction technique the differences were reduced to less than 5%. The parameters obtained from the Cole-Cole plot may be useful as a characterization of the nature and health of the imaged tissues.