972 resultados para Reclaimed asphalt pavements
Resumo:
As truck traffic on Iowa secondary roads has increased, engineers have moved to concrete pavements of greater depths. Early designs included thickened edge pavements and depths of seven inches or greater. The designs typically did not have load transfer devices installed in the transverse joints and relied on aggregate interlock for this purpose. In some cases, aggregate interlock was not adequate to deal with the soils and traffic conditions and faulting of the joints has begun to appear. Engineers are now faced with the need to install or retrofit load transfer in the joints to preserve the pavements. Questions associated with this decision range from the type of dowel material to dowel diameter, spacing, number of bars, placement method, and construction techniques to be used to assure reduction or elimination of faulting. Buena Vista County constructed a dowel bar retrofit project on one mile of road. The plan called for addition of the dowels (2, 3, or 4) in the outer wheel path only and surface grinding in lieu of asphalt overlay. The project included the application of elliptical- and round-shaped dowels in a rehabilitation project. Dowel material types included conventional epoxy-coated steel and fiber-reinforced polymer (FRP). This work involved the determination of relative costs in materials to be used in this type of work and performance of FRP and elliptical-shaped steel dowels in the retrofit work. The results indicate good performance from each of the bar configurations and use the results of ride and deflection testing over the research period to project the benefits that can be gained from each configuration vs. the anticipated construction costs. The reader is cautioned that this project could not relate the number of dowels required to the level of anticipated truck traffic for other roads that might be considered.
Resumo:
This study evaluated the use of electromagnetic gauges to determine the adjusted densities of HMA pavements. Field measurements were taken with two electromagnetic gauges, the Pavement Quality Indicator (PQI) 301 and the Pavetracker Plus 2701B. Seven projects were included in the study with 3 to 5 consecutive paving days. For each day/lot 20 randomly selected locations were tested along with seven core locations. The analysis of PaveTracker and PQI density consisted of determining which factors are statistically significant, and core density residuals and a regression analysis of core as a function of PaveTracker and PQI readings. The following key conclusions can be stated: 1. Core density, traffic and binder content were all found to be significant for both electromagnetic gauges studied, 2. Core density residuals are normally distributed and centered at zero for both electromagnetic gauges, 3. For PaveTracker readings, statistically one third of the lots do not have an intercept that is zero and two thirds of the lots do not rule out a scaler correction factor of zero, 4. For PQI readings, statistically the 95% confidence interval rules out the intercept being zero for all seven projects and six of the seven projects do not rule out the scaler correction factor being zero, 5. The PQI 301 gauge should not be used for quality control or quality assurance, and 6. The Pavetracker 2701B gauge can be used for quality control but not quality assurance. This study has found that with the limited sample size, the adjusted density equations for both electromagnetic gauges were determined to be inadequate. The PaveTracker Plus 2701B was determined to be better than the PQI 301. The PaveTracker 2701B could still be applicable for quality assurance if the number of core locations per day is reduced and supplemented with additional PaveTracker 2701B readings. Further research should be done to determine the minimum number of core locations to calibrate the gauges each day/lot and the number of additional PaveTracker 2701B readings required.
Resumo:
In jointed portland cement concrete pavements, dowel bars are typically used to transfer loads between adjacent slabs. A common practice is for designers to place dowel bars at a certain, consistent spacing such that a sufficient number of dowels are available to effectively transfer anticipated loads. In many cases, however, the standards developed today for new highway construction simply do not reflect the design needs of low traffic volume, rural roads. The objective of this research was to evaluate the impact of the number of dowel bars and dowel location on joint performance and ultimately on pavement performance. For this research, test sections were designed, constructed, and tested in actual field service pavement. Test sections were developed to include areas with load transfer assemblies having three and four dowels in the outer wheel path only, areas with no joint reinforcement whatsoever, and full lane dowel basket assemblies as the control. Two adjacent paving projects provided both rural and urban settings and differing base materials. This report documents the approach to implementing the study and provides discussion and suggestions based on the results of the research. The research results indicate that the use of single three or four dowel basket assemblies in the outer wheel path is acceptable for use in low truck volume roads. In the case of roadways with relatively stiff bases such as asphalt treated or stabilized bases, the use of the three dowel bar pattern in the outside wheel path is expected to provide adequate performance over the design life of the pavement. In the case of untreated or granular bases, the results indicate that the use of the three or four dowel bar basket in both wheel paths provides the best long-term solution to load transfer and faulting measurements.
Resumo:
Asphalt is used as a binder for thin maintenance surface (TMS) applications because of two key properties, it is waterproof and it adheres relatively well to the aggregate. Since asphalt is too stiff at room temperature to apply to the road surface, it is usually applied as either a cutback asphalt or an asphalt emulsion. The asphalt emulsions can be further divided into high float emulsions, cationic emulsions or polymer-modified binders, which are emulsions with polymers added to them. These types of binders are discussed further below.
Resumo:
The objective is to determine the optimum percentage of water needed to produce the best foam properties for a given asphalt binder. The optimum water content is determined by achieving the maximum expansion ratio and half-life of the foamed asphalt. Expansion ratio is defined as the maximum volume over its original volume and half-life is defined as the time in seconds for foam to become a half of its maximum volume.
Resumo:
The main objective of this research is to examine the effects that different methods of RAP stockpile fractionation would have on the volumetric mix design properties for high-RAP content surface mixes, with the goal of meeting all specified criteria for standard HMA mix designs. To determine the distribution of fine aggregates and binder in RAP stockpile, RAP materials were divided by each sieve size. The composition of RAP materials retained on each sieve was analyzed to determine the optimum fractionation method. Fractionation methods were designed to separate the stockpile at a specified sieve size to control the amount of fine RAP materials which contain higher amounts of fine aggregates and dust contents. These fine RAP materials were used in reduced proportions or completely eliminated, thereby decreasing the amount of fine aggregate materials introduced to the mix. Mix designs were performed using RAP materials from four different stockpiles and the two fractionated methods were used with high-RAP contents up to 50% by virgin binder replacement. By using a fractionation method, a mix with up to 50% RAP was successfully designed while meeting all Superpave criteria and asphalt film thickness requirement by controlling the dust content from RAP stockpiles.
Resumo:
Reflective cracks form in pavements when hot-mix asphalt (HMA) overlays are placed over jointed and/or severely cracked rigid and flexible pavements. In the first part of the research, survival analysis was conducted to identify the most appropriate rehabilitation method for composite pavements and to evaluate the influence of different factors on reflective crack development. Four rehabilitation methods, including mill and fill, overlay, heater scarification (SCR), and rubblization, were analyzed using three performance indicators: reflective cracking, international roughness index (IRI), and pavement condition index (PCI). It was found that rubblization can significantly retard reflective cracking development compared to the other three methods. No significant difference for PCI was seen among the four rehabilitation methods. Heater scarification showed the lowest survival probability for both reflective cracking and IRI, while an overlay resulted in the poorest overall pavement condition based on PCI. In addition, traffic level was found not to be a significant factor for reflective cracking development. An increase in overlay thickness can significantly delay the propagation of reflective cracking for all four treatments. Soil types in rubblization pavement sites were assessed, and no close relationship was found between rubblized pavement performance and subgrade soil condition. In the second part of the research, the study objective was to evaluate the modulus and performance of four reflective cracking treatments: full rubblization, modified rubblization, crack and seat, and rock interlayer. A total of 16 pavement sites were tested by the surface wave method (SWM), and in the first four sites both falling weight deflectometer (FWD) and SWM were conducted for a preliminary analysis. The SWM gave close concrete layer moduli compared to the FWD moduli on a conventional composite pavement. However, the SWM provided higher moduli for the rubblized concrete layer. After the preliminary analysis, another 12 pavement sites were tested by the SWM. The results showed that the crack and seat method provided the highest moduli, followed by the modified rubblization method. The full rubblization and the rock interlayer methods gave similar, but lower, moduli. Pavement performance surveys were also conducted during the field study. In general, none of the pavement sites had rutting problems. The conventional composite pavement site had the largest amount of reflective cracking. A moderate amount of reflective cracking was observed for the two pavement sites with full rubblization. Pavements with the rock interlayer and modified rubblization treatments had much less reflective cracking. It is recommended that use of the modified rubblization and rock interlayer treatments for reflective cracking mitigation are best.
Resumo:
Bio-binders can be utilized as asphalt modifiers, extenders, and replacements for conventional asphalt in bituminous binders. From the rheology results of Phase I of this project, it was found that the bio-binders tested had good performance, similar to conventional asphalt, except at low temperatures. Phase II of this project addresses this shortcoming and evaluates the Superpave performance of laboratory mixes produced with the enhanced bio-binders. The main objective of this research was to develop a bio-binder capable of replacing conventional asphalt in flexible pavements by incorporating ground tire rubber (GTR) into bio-oil derived from fast pyrolysis of agriculture and forestry residues. The chemical compatibility of the new bio-binder with GTR was assessed, and the low-temperature performance of the bio-binders was enhanced by the use of GTR. The newly developed binder, which consisted of 80 percent conventional binder and 20 percent rubber-modified bio-oil (85 percent bio-oil with 15 percent GTR), was used to produce mixes at two different air void contents, 4 and 7 percent. The laboratory performance test results showed that the performance of the newly developed bio-binder mixes is as good as or better than conventional asphalt mixes for fatigue cracking, rutting resistance, moisture sensitivity, and low-temperature cracking. These results need to be validated in field projects in order to demonstrate adequate performance for this innovative and sustainable technology for flexible pavements.
Resumo:
There are still many vintage portland cement concrete (PCC) pavements, 18 ft wide (5.4 m), dating back to pre-World War II era in use today. Successive overlays have been placed to cover joints and to improve rideability. The average thickness of the existing asphalt cement concrete (ACC) along route E66 in Tama County, Iowa, was 6.13 in. (15.6 cm). The rehabilitation strategy called for widening the base using the top 3 in. (7.6 cm) of the existing ACC by a recycling process involving cold milling and mixing with additional emulsion/rejuvenator. The material was then placed into a widening trench and compacted to match the level of the milled surface. This project was undertaken to develop a rehabilitation methodology to widen these older pavements economically and to have a finished surface capable of carrying traffic with little or no additional work.
Resumo:
The coefficients of relative strength (CORS) of base courses for use in the American association state highway officials (AASHO) interim guide for the design of flexible pavements are determined here. Based on (1) volumetric strain--axial strain relationships at minimum volume, and (2) effective stress ratio-cohesion relationships at maximum effective stress ratio, CORS were determined from the results of laboratory triaxial tests on both asphalt-treated and untreated aggregate base course materials. The researchers conclude that volumetric strain-axial strain at minimum volume appear to be appropriate parameters for determining CORS.
Resumo:
The increase in traffic growth and maintenance expenditures demands the urgent need for building better, long-lasting, and more efficient roads preventing or minimizing bituminous pavement distresses. Many of the principal distresses in pavements initiate or increase in severity due to the presence of water. In Kerala highways, where traditional dense graded mixtures are used for the surface courses, major distress is due to moisture induced damages. The Stone Matrix Asphalt (SMA) mixtures provide a durable surface course. Proven field performance of test track at Delhi recommends Stone Matrix Asphalt as a right choice to sustain severe climatic and heavy traffic conditions. But the concept of SMA in India is not so popularized and its application is very limited mainly due to the lack of proper specifications. This research is an attempt to study the influence of additives on the characteristics of SMA mixtures and to propose an ideal surface course for the pavements. The additives used for this investigation are coir, sisal, banana fibres (natural fibres), waste plastics (waste material) and polypropylene (polymer). A preliminary investigation is conducted to characterize the materials used in this study. Marshall test is conducted for optimizing the SMA mixtures (Control mixture-without additives and Stabilized mixtures with additives). Indirect tensile strength tests, compression strength tests, triaxial strength tests and drain down sensitivity tests are conducted to study the engineering properties of stabilized mixtures. The comparison of the performance of all stabilized mixtures with the control mixture and among themselves are carried out. A statistical analysis (SPSS package Ver.16) is performed to establish the findings of this study
Resumo:
Maintenance planning of road pavement requires reliable estimates of roads’ lifetimes. In determining the lifetime of a road, this study combines maintenance activities and road condition measurements. The scope of the paper is to estimate lifetimes of road pavements in Sweden with time to event analysis. The model used includes effects of pavement type, road type, bearing capacity, road width, speed limit, stone size and climate zone, where the model is stratified according to traffic load. Among the nine analyzed pavement types, stone mastic had the longest expected lifetime, 32 percent longer than asphalt concrete. Among road types, ordinary roads with cable barriers had 30 percent shorter lifetime than ordinary roads. Increased speed lowered the lifetime, while increased stone size (up to 20 mm) and increased road width lengthened the lifetime. The results are of importance for life cycle cost analysis and road management.
Resumo:
The "sustainability" concept relates to the prolonging of human economic systems with as little detrimental impact on ecological systems as possible. Construction that exhibits good environmental stewardship and practices that conserve resources in a manner that allow growth and development to be sustained for the long-term without degrading the environment are indispensable in a developed society. Past, current and future advancements in asphalt as an environmentally sustainable paving material are especially important because the quantities of asphalt used annually in Europe as well as in the U.S. are large. The asphalt industry is still developing technological improvements that will reduce the environmental impact without affecting the final mechanical performance. Warm mix asphalt (WMA) is a type of asphalt mix requiring lower production temperatures compared to hot mix asphalt (HMA), while aiming to maintain the desired post construction properties of traditional HMA. Lowering the production temperature reduce the fuel usage and the production of emissions therefore and that improve conditions for workers and supports the sustainable development. Even the crumb-rubber modifier (CRM), with shredded automobile tires and used in the United States since the mid 1980s, has proven to be an environmentally friendly alternative to conventional asphalt pavement. Furthermore, the use of waste tires is not only relevant in an environmental aspect but also for the engineering properties of asphalt [Pennisi E., 1992]. This research project is aimed to demonstrate the dual value of these Asphalt Mixes in regards to the environmental and mechanical performance and to suggest a low environmental impact design procedure. In fact, the use of eco-friendly materials is the first phase towards an eco-compatible design but it cannot be the only step. The eco-compatible approach should be extended also to the design method and material characterization because only with these phases is it possible to exploit the maximum potential properties of the used materials. Appropriate asphalt concrete characterization is essential and vital for realistic performance prediction of asphalt concrete pavements. Volumetric (Mix design) and mechanical (Permanent deformation and Fatigue performance) properties are important factors to consider. Moreover, an advanced and efficient design method is necessary in order to correctly use the material. A design method such as a Mechanistic-Empirical approach, consisting of a structural model capable of predicting the state of stresses and strains within the pavement structure under the different traffic and environmental conditions, was the application of choice. In particular this study focus on the CalME and its Incremental-Recursive (I-R) procedure, based on damage models for fatigue and permanent shear strain related to the surface cracking and to the rutting respectively. It works in increments of time and, using the output from one increment, recursively, as input to the next increment, predicts the pavement conditions in terms of layer moduli, fatigue cracking, rutting and roughness. This software procedure was adopted in order to verify the mechanical properties of the study mixes and the reciprocal relationship between surface layer and pavement structure in terms of fatigue and permanent deformation with defined traffic and environmental conditions. The asphalt mixes studied were used in a pavement structure as surface layer of 60 mm thickness. The performance of the pavement was compared to the performance of the same pavement structure where different kinds of asphalt concrete were used as surface layer. In comparison to a conventional asphalt concrete, three eco-friendly materials, two warm mix asphalt and a rubberized asphalt concrete, were analyzed. The First Two Chapters summarize the necessary steps aimed to satisfy the sustainable pavement design procedure. In Chapter I the problem of asphalt pavement eco-compatible design was introduced. The low environmental impact materials such as the Warm Mix Asphalt and the Rubberized Asphalt Concrete were described in detail. In addition the value of a rational asphalt pavement design method was discussed. Chapter II underlines the importance of a deep laboratory characterization based on appropriate materials selection and performance evaluation. In Chapter III, CalME is introduced trough a specific explanation of the different equipped design approaches and specifically explaining the I-R procedure. In Chapter IV, the experimental program is presented with a explanation of test laboratory devices adopted. The Fatigue and Rutting performances of the study mixes are shown respectively in Chapter V and VI. Through these laboratory test data the CalME I-R models parameters for Master Curve, fatigue damage and permanent shear strain were evaluated. Lastly, in Chapter VII, the results of the asphalt pavement structures simulations with different surface layers were reported. For each pavement structure, the total surface cracking, the total rutting, the fatigue damage and the rutting depth in each bound layer were analyzed.
Resumo:
Due to a growing concern over global warming, the bituminous mixture industry is making a constant effort to diminish its emissions by reducing manufacturing and installation temperatures without compromising the mechanical properties of the bituminous mixtures. The use of mixtures with tyre rubber has demonstrated that these mixtures can be economical and ecological and that they improve the behaviour of the pavements. However, bituminous mixtures with a high rubber content present one major drawback: they require higher mixing and installation temperatures due to the elevated viscosity caused by the high rubber content and thus they produce larger amounts of greenhouse gas emissions than conventional bituminous mixtures. This article presents a study of the effect of four viscosity-reducing additives (Sasobit®, Asphaltan A®, Asphaltan B® and Licomont BS 100®) on a bitumen modified with 15% rubber. The results of this study indicate that these additives successfully reduce viscosity, increase the softening temperature and reduce penetration. However, they do not have a clear effect on the test for elastic recovery and ductility at 25 °C.
Resumo:
En los últimos años, debido a la creciente preocupación por el calentamiento global y el cambio climático, uno de los retos más importantes a los que se enfrenta nuestra sociedad es el uso eficiente y económico de energía así como la necesidad correspondiente de reducir los gases de efecto invernadero (GEI). Las tecnologías de mezclas semicalientes se han convertido en un nuevo e importante tema de investigación en el campo de los materiales para pavimentos ya que ofrece una solución potencial para la reducción del consumo energético y las emisiones de GEI durante la producción y puesta en obra de las mezclas bituminosas. Por otro lado, los pavimentos que contienen polvo de caucho procedente de neumático fuera de uso, al hacer uso productos de desecho, ahorran energía y recursos naturales. Estos pavimentos ofrecen una resistencia mejorada a la formación de roderas, a la fatiga y a la fisuración térmica, reducen los costes de mantenimiento y el ruido del tráfico así como prolongan la vida útil del pavimento. Sin embargo, estas mezclas presentan un importante inconveniente: la temperatura de fabricación se debe aumentar en comparación con las mezclas asfálticas convencionales, ya que la incorporación de caucho aumenta la viscosidad del ligante y, por lo tanto, se producen mayores cantidades de emisiones de GEI. En la presente Tesis, la tecnología de mezclas semicalientes con aditivos orgánicos (Sasobit, Asphaltan A, Asphaltan B, Licomont) se incorporó a la de betunes de alta viscosidad modificados con caucho (15% y 20% de caucho) con la finalidad de dar una solución a los inconvenientes de mezclas con caucho gracias a la utilización de aditivos reductores de la viscosidad. Para este fin, se estudió si sería posible obtener una producción más sostenible de mezclas con betunes de alto contenido en caucho sin afectar significativamente su nivel de rendimiento mecánico. La metodología aplicada para evaluar y comparar las características de las mezclas consistió en la realización de una serie de ensayos de laboratorio para betunes y mezclas con caucho y con aditivos de mezclas semicalientes y de un análisis del ciclo de vida híbrido de la producción de mezclas semicalientes teniendo en cuenta la papel del aditivo en la cadena de suministro con el fin de cuantificar con precisión los beneficios de esta tecnología. Los resultados del estudio indicaron que la incorporación de los aditivos permite reducir la viscosidad de los ligantes y, en consecuencia, las temperaturas de producción y de compactación de las mezclas. Por otro lado, aunque la adición de caucho mejoró significativamente el comportamiento mecánico de los ligantes a baja temperatura reduciendo la susceptibilidad al fenómeno de fisuración térmica, la adición de las ceras aumentó ligeramente la rigidez. Los resultados del estudio reológico mostraron que la adición de porcentajes crecientes de caucho mejoraban la resistencia del pavimento con respecto a la resistencia a la deformación permanente a altas temperaturas y a la fisuración térmica a bajas temperaturas. Además, se observó que los aditivos mejoran la resistencia a roderas y la elasticidad del pavimento al aumentar el módulo complejo a altas temperaturas y al disminuir del ángulo de fase. Por otra parte, el estudio reológico confirmó que los aditivos estudiados aumentan ligeramente la rigidez a bajas temperaturas. Los ensayos de fluencia llevados a cabo con el reómetro demostraron una vez más la mejora en la elasticidad y en la resistencia a la deformación permanente dada por la adición de las ceras. El estudio de mezclas con caucho y aditivos de mezclas semicalientes llevado a cabo demostró que las temperaturas de producción/compactación se pueden disminuir, que las mezclas no experimentarían escurrimiento, que los aditivos no cambian significativamente la resistencia conservada y que cumplen la sensibilidad al agua exigida. Además, los aditivos aumentaron el módulo de rigidez en algunos casos y mejoraron significativamente la resistencia a la deformación permanente. Asimismo, a excepción de uno de los aditivos, las mezclas con ceras tenían la misma o mayor resistencia a la fatiga en comparación con la mezcla control. Los resultados del análisis de ciclo de vida híbrido mostraron que la tecnología de mezclas semicalientes es capaz de ahorrar significativamente energía y reducir las emisiones de GEI, hasta un 18% y 20% respectivamente, en comparación con las mezclas de control. Sin embargo, en algunos de los casos estudiados, debido a la presencia de la cera, la temperatura de fabricación debe reducirse en un promedio de 8 ºC antes de que los beneficios de la reducción de emisiones y el consumo de combustible puedan ser obtenidos. Los principales sectores contribuyentes a los impactos ambientales generados en la fabricación de mezclas semicalientes fueron el sector de los combustibles, el de la minería y el de la construcción. Due to growing concerns over global warming and climate change in recent years, one of the most important challenges facing our society is the efficient and economic use of energy, and with it, the corresponding need to reduce greenhouse gas (GHG) emissions. The Warm Mix Asphalt (WMA) technology has become an important new research topic in the field of pavement materials as it offers a potential solution for the reduction of energy consumption and GHG emissions during the production and placement of asphalt mixtures. On the other hand, pavements containing crumb-rubber modified (CRM) binders save energy and natural resources by making use of waste products. These pavements offer an improved resistance to rutting, fatigue and thermal cracking; reduce traffic noise and maintenance costs and prolong pavement life. These mixtures, however, present one major drawback: the manufacturing temperature is higher compared to conventional asphalt mixtures as the rubber lends greater viscosity to the binder and, therefore, larger amounts of GHG emissions are produced. In this dissertation the WMA technology with organic additives (Sasobit, Asphaltan A, Asphaltan B and Licomont) was applied to CRM binders (15% and 20% of rubber) in order to offer a solution to the drawbacks of asphalt rubber (AR) mixtures thanks to the use of fluidifying additives. For this purpose, this study sought to determine if a more sustainable production of AR mixtures could be obtained without significantly affecting their level of mechanical performance. The methodology applied in order to evaluate and compare the performance of the mixtures consisted of carrying out several laboratory tests for the CRM binders and AR mixtures with WMA additives (AR-WMA mixtures) and a hybrid input-output-based life cycle assessment (hLCA) of the production of WMA. The results of the study indicated that the incorporation of the organic additives were able to reduce the viscosity of the binders and, consequently, the production and compaction temperatures. On the other hand, although the addition of rubber significantly improved the mechanical behaviour of the binders at low temperatures reducing the susceptibility to thermal cracking phenomena, the addition of the waxes slightly increased the stiffness. Master curves showed that the addition of increasing percentages of rubber improved the resistance of the pavement regarding both resistance to permanent deformation at high temperatures and thermal cracking at low temperatures. In addition, the waxes improved the rutting resistance and the elasticity as they increased the complex modulus at high temperatures and decreased the phase angle. Moreover, master curves also attest that the WMA additives studied increase the stiffness at low temperatures. The creep tests carried out proved once again the improvement in the elasticity and in the resistance to permanent deformation given by the addition of the waxes. The AR-WMA mixtures studied have shown that the production/compaction temperatures can be decreased, that the mixtures would not experience binder drainage, that the additives did not significantly change the retained resistance and fulfilled the water sensitivity required. Furthermore, the additives increased the stiffness modulus in some cases and significantly improved the permanent deformation resistance. Except for one of the additives, the waxes had the same or higher fatigue resistance compared to the control mixture. The results of the hLCA demonstrated that the WMA technology is able to significantly save energy and reduce GHG emissions, up to 18% and 20%, respectively, compared to the control mixtures. However, in some of the case studies, due to the presence of wax, the manufacturing temperature at the asphalt plant must be reduced by an average of 8ºC before the benefits of reduced emissions and fuel usage can be obtained. The results regarding the overall impacts generated using a detailed production layer decomposition indicated that fuel, mining and construction sectors are the main contributors to the environmental impacts of manufacturing WMA mixtures.