980 resultados para Receptors, Adrenergic, beta-3
Resumo:
Some beta (1)- and beta (2)-adrenoceptor-blocking agents, such as (-)-CGP 12177, cause cardiostimulant effects at concentrations considerably higher than those that antagonise the effects of catecholamines. The cardiostimulant effects of these non-conventional partial agonists are relatively resistant to blockade by (-)-propranolol and have been proposed to be mediated through putative beta (4)-adrenoceptors or through atypical states of either beta (1)- or beta (2)-adrenoceptors. We investigated the effects of (-)-CGP 12177 on sinoatrial rate and left atrial contractile force as well as the ventricular binding of (-)-[H-3]CGP 12177 in tissues from wild-type, beta (2)-adrenoceptor knockout and beta (1)/beta (2)-adrenoceptor double knockout mice. The cardiostimulant effects of (-)-CGP 12177 were present in wildtype and beta (2)-adrenoceptor knockout mice but were absent in beta (1)/beta (2)-adrenoceptor double knockout mice. Thus, the presence of beta (1)-adrenoceptors is obligatory for the cardiostimulant effects of (-)-CGP 12177. It appears therefore that an atypical state of the beta (1)-adrenoceptor contributes to the mediation of the cardiostimulant effects induced by non-conventional partial agonists. Ventricular beta (1)- and beta (2)-adrenoceptors, labelled in wild-type with a K(D)similar to0.5 nmol/l (similar to 16 fmol/mg protein), were absent in beta (1)/beta (2)-adrenoceptor double knockout mice. However, a high density binding site (similar to 154-391 fmol/mg protein) that did not saturate completely (K(D)similar to 80-200 nM) was labelled by (-)-[H-3]CGP 12177 in the three groups of mice, being distinct from beta (1)- and beta (2)-adrenoceptors, as well as from the site mediating the agonist effects of(-)-CGP 12177.
Resumo:
This study investigated the residues responsible for the reduced picrotoxin sensitivity of the alpha beta heteromeric glycine receptor relative to the alpha homomeric receptor. By analogy with structurally related receptors, the beta subunit M2 domain residues P278 and F282 were considered the most likely candidates for mediating this effect. These residues align with G254 and T258 of the alpha subunit. The T258A, T258C and T258F mutations dramatically reduced the picrotoxin sensitivity of the alpha homomeric receptor. Furthermore, the converse F282T mutation in the beta subunit increased the picrotoxin sensitivity of the alpha beta heteromeric receptor. The P278G mutation in the beta subunit did not affect the picrotoxin sensitivity of the alpha beta heteromer. Thus, a ring of five threonines at the M2 domain depth corresponding to alpha subunit T258 is specifically required for picrotoxin sensitivity. Mutations to alpha subunit T258 also profoundly influenced the apparent glycine affinity. A substituted cysteine accessibility analysis revealed that the T258C sidechain increases its pore exposure in the channel open state. This provides further evidence for an allosteric mechanism of picrotoxin inhibition, but renders it unlikely that picrotoxin las an allosterically acting 'competitive' antagonist) binds to this residue.
Resumo:
Protease-activated receptors type 2 (PAR2) are activated by serine proteases like trypsin and mast cell tryptase. The function and physiological significance of PAR2 receptors is poorly understood, but recent studies suggest a role during inflammatory processes in both airways and intestine. PAR2 receptors are also likely to participate in the control of ion transport in these tissues. We demonstrate that stimulation of PAR2 in airways and intestine significantly enhanced ion transport. Trypsin induced CI- secretion in both airways and intestine when added to the basolateral but not to the luminal side of these tissues. In both airways and intestine, stimulation of ion transport was largely dependent on the increase in intracellular Ca2+. Effects of trypsin were largely reduced by basolateral bumetanide and barium and by trypsin inhibitor. Thrombin, an activator of proteinase-activated receptors types 1, 3, and 4 had no effects on equivalent short-circuit current in either airways or intestine. Expression of PAR2 in colon and airways was further confirmed by reverse transcription-polymerase chain reaction. We postulate that these receptors play a significant role in the regulation of electrolyte transport, which might be important during inflammatory diseases of airways and intestine.
Resumo:
We have suggested previously that both the negatively and positively charged residues of the highly conserved Glu/Asp-Arg-Tyr (E/DRY) motif play an important role in the activation process of the alpha(1b)-adreneric receptor (AR). In this study, R143 of the E/DRY sequence in the alpha(1b)-AR was mutated into several amino acids (Lys, His, Glu, Asp, Ala, Asn, and Ile). The charge-conserving mutation of R143 into lysine not only preserved the maximal agonist-induced response of the alpha(1b)-AR, but it also conferred high degree of constitutive activity to the receptor. Both basal and agonist-induced phosphorylation levels were significantly increased for the R143K mutant compared with those of the wild-type receptor. Other substitutions of R143 resulted in receptor mutants with either a small increase in constitutive activity (R143H and R143D), impairment (R143H, R143D), or complete loss of receptor-mediated response (R143E, R143A, R143N, R143I). The R413E mutant displayed a small, but significant increase in basal phosphorylation despite being severely impaired in receptor-mediated response. Interestingly, all the arginine mutants displayed increased affinity for agonist binding compared with the wild-type alpha(1b)-AR. A correlation was found between the extent of the affinity shift and the intrinsic activity of the agonists. The analysis of the receptor mutants using the allosteric ternary complex model in conjunction with the results of molecular dynamics simulations on the receptor models support the hypothesis that mutations of R143 can drive the isomerization of the alpha(1b)-AR into different states, highlighting the crucial role of this residue in the activation process of the receptor.
Resumo:
BACKGROUND: Lower body negative pressure (LBNP) has been shown to induce a progressive activation of neurohormonal systems, and a renal tubular and hemodynamic response that mimics the renal adaptation observed in congestive heart failure (CHF). As beta-blockers play an important role in the management of CHF patients, the effects of metoprolol on the renal response were examined in healthy subjects during sustained LBNP. METHODS: Twenty healthy male subjects were randomized in this double blind, placebo versus metoprolol 200 mg once daily, study. After 10 days of treatment, each subject was exposed to 3 levels of LBNP (0, -10, and -20 mbar) for 1 hour, each level of LBNP being separated by 2 days. Neurohormonal profiles, systemic and renal hemodynamics, as well as renal sodium handling were measured before, during, and after LBNP. RESULTS: Blood pressure and heart rate were significantly lower in the metoprolol group throughout the study (P < 0.01). GFR and RPF were similar in both groups at baseline, and no change in renal hemodynamic values was detected at any level of LBNP. However, a reduction in sodium excretion was observed in the placebo group at -20 mbar, whereas no change was detected in the metoprolol group. An increase in plasma renin activity was also observed at -20 mbar in the placebo group that was not observed with metoprolol. CONCLUSION: The beta-blocker metoprolol prevents the sodium retention induced by lower body negative pressure in healthy subjects despite a lower blood pressure. The prevention of sodium retention may be due to a blunting of the neurohormonal response. These effects of metoprolol on the renal response to LBNP may in part explain the beneficial effects of this agent in heart failure patients.
Resumo:
Knockout mice lacking the alpha-1b adrenergic receptor were tested in behavioral experiments. Reaction to novelty was first assessed in a simple test in which the time taken by the knockout mice and their littermate controls to enter a second compartment was compared. Then the mice were tested in an open field to which unknown objects were subsequently added. Special novelty was introduced by moving one of the familiar objects to another location in the open field. Spatial behavior and memory were further studied in a homing board test, and in the water maze. The alpha-1b knockout mice showed an enhanced reactivity to new situations. They were faster to enter the new environment, covered longer paths in the open field, and spent more time exploring the new objects. They reacted like controls to modification inducing spatial novelty. In the homing board test, both the knockout mice and the control mice seemed to use a combination of distant visual and proximal olfactory cues, showing place preference only if the two types of cues were redundant. In the water maze the alpha-1b knockout mice were unable to learn the task, which was confirmed in a probe trial without platform. They were perfectly able, however, to escape in a visible platform procedure. These results confirm previous findings showing that the noradrenergic pathway is important for the modulation of behaviors such as reaction to novelty and exploration, and suggest that this is mediated, at least partly, through the alpha-1b adrenergic receptors. The lack of alpha-1b adrenergic receptors in spatial orientation does not seem important in cue-rich tasks but may interfere with orientation in situations providing distant cues only.
Resumo:
We combined biophysical, biochemical, and pharmacological approaches to investigate the ability of the alpha 1a- and alpha 1b-adrenergic receptor (AR) subtypes to form homo- and hetero-oligomers. Receptors tagged with different epitopes (hemagglutinin and Myc) or fluorescent proteins (cyan and green fluorescent proteins) were transiently expressed in HEK-293 cells either individually or in different combinations. Fluorescence resonance energy transfer measurements provided evidence that both the alpha 1a- and alpha 1b-AR can form homo-oligomers with similar transfer efficiency of approximately 0.10. Hetero-oligomers could also be observed between the alpha 1b- and the alpha 1a-AR subtypes but not between the alpha 1b-AR and the beta2-AR, the NK1 tachykinin, or the CCR5 chemokine receptors. Oligomerization of the alpha 1b-AR did not require the integrity of its C-tail, of two glycophorin motifs, or of the N-linked glycosylation sites at its N terminus. In contrast, helix I and, to a lesser extent, helix VII were found to play a role in the alpha 1b-AR homo-oligomerization. Receptor oligomerization was not influenced by the agonist epinephrine or by the inverse agonist prazosin. A constitutively active (A293E) as well as a signaling-deficient (R143E) mutant displayed oligomerization features similar to those of the wild type alpha 1b-AR. Confocal imaging revealed that oligomerization of the alpha1-AR subtypes correlated with their ability to co-internalize upon exposure to the agonist. The alpha 1a-selective agonist oxymetazoline induced the co-internalization of the alpha 1a- and alpha 1b-AR, whereas the alpha 1b-AR could not co-internalize with the NK1 tachykinin or CCR5 chemokine receptors. Oligomerization might therefore represent an additional mechanism regulating the physiological responses mediated by the alpha 1a- and alpha 1b-AR subtypes.
Resumo:
Eosinophils, along with mast cells are key cells involved in the innate immune response against parasitic infection whereas the adaptive immune response is largely dependent on lymphocytes. In chronic parasitic disease and in chronic allergic disease, IL-5 is predominantly a T cell derived cytokine which is particularly important for the terminal differentiation, activation and survival of committed eosinophil precursors. The human IL-5 gene is located on chromosome 5 in a gene cluster that contains the evolutionary related IL-4 family of cytokine genes. The human IL-5 receptor complex is a heterodimer consisting of a unique a subunit (predominantly expressed on eosinophils) and a beta subunit which is shared between the receptors for IL-3 & GM-CSF (more widely expressed). The a subunit is required for ligand-specific binding whereas association with the beta subunit results in increased binding affinity. The alternative splicing of the alphaIL-5R gene which contains 14 exons can yield several alphaIL-5R isoforms including a membrane-anchored isoform (alphaIL-5Rm) and a soluble isoform (alphaIL-5Rs). Cytokines such as IL-5 produce specific and non-specific cellular responses through specific cell membrane receptor mediated activation of intracellular signal transduction pathways which, to a large part, regulate gene expression. The major intracellular signal transduction mechanism is activation of non-receptor associated tyrosine kinases including JAK and MAP kinases which can then transduce signals via a novel family of transcriptional factors named signal transducers and activators of transcription (STATS). JAK2, STAT1 and STAT 5 appear to be particularly important in IL-5 mediated eosinophil responses. Asthma is characterized by episodic airways obstruction, increased bronchial responsiveness, and airway inflammation. Several studies have shown an association between the number of activated T cells and eosinophils in the airways and abnormalities in FEV1, airway reactivity and clinical severity in asthma. It has now been well documented that IL-5 is highly expressed in the bronchial mucosa of atopic and intrinsic asthmatics and that the increased IL-5 mRNA present in airway tissues is predominantly T cell derived. Immunocytochemical staining of bronchial biopsy sections has confirmed that IL-5 mRNA transcripts are translated into protein in asthmatic subjects. Furthermore, the number of activated CD 4 + T cells and IL-5 mRNA positive cells are increased in asthmatic airways following antigen challenge and studies that have examined IL-5 expression in asthmatic subjects before and after steroids have shown significantly decreased expression following oral corticosteroid treatment in steroid-sensitive asthma but not in steroid resistant and chronic severe steroid dependent asthma. The link between T cell derived IL-5 and eosinophil activation in asthmatic airways is further strengthened by the demonstration that there is an increased number of alphaIL-5R mRNA positive cells in the bronchial biopsies of atopic and non-atopic asthmatic subjects and that the eosinophil is the predominant site of this increased alphaIL-5R mRNA expression. We have also shown that the subset of activated eosinophils that expressed mRNA for membrane bound alpha IL5r inversely correlated with FEV1, whereas the subset of activated eosinophils that expressed mRNA for soluble alphaIL5r directly correlated with FEV1. Hence, not only does this data suggest that the presence of eosinophils expressing alphaIL-5R mRNA contribute towards the pathogenesis of bronchial asthma, but also that the eosinophil phenotype with respect to alphaIL-5R isoform expression is of central importance. Finally, there are several animal, and more recently in vitro lung explant, models of allergen induced eosinophilia, late airway responses(LARS), and bronchial hyperresponsiveness(BHR) - all of which support a link between IL-5 and airway eosinophila and bronchial hyperresponsiveness. The most direct demonstration of T cell involvement in LARS is the finding that these physiological responses can be transferred by CD4+ but not CD8+ T cells in rats. The importance of IL-5 in animal models of allergen induced bronchial hyperresponsiveness has been further demonstrated by a number of studies which have indicated that IL-5 administration is able to induce late phase responses and BHR and that anti-IL-5 antibody can block allergen induced late phase responses and BHR. In summary, activated T lymphocytes, IL5 production and eosinophil activation are particularly important in the asthmatic response. Human studies in asthma and studies in allergic animal models have clearly emphasised the unique role of IL-5 in linking T lymphocytes and adaptive immunity, the eosinophil effector cell, and the asthma phenotype. The central role of activated lymphocytes and eosinophils in asthma would argue for the likely therapeutic success of strategies to block T cell and eosinophil activation (eg steroids). Importantly, more targeted therapies may avoid the complications associated with steroids. Such therapies could target key T cell activation proteins and cytokines by various means including blocking antibodies (eg anti-CD4, anti-CD40, anti-IL-5 etc), antisense oligonucleotides to their specific mRNAs, and/or selective inhibition of the promoter sites for these genes. Another option would be to target key eosinophil activation mechanisms including the aIL5r. As always, the risk to benefit ratio of such strategies await the results of well conducted clinical trials.
Resumo:
The alpha 1B-adrenergic receptor (alpha 1BAR) and its truncated mutant T368 lacking the last 147 amino acids were stably expressed in Rat1 fibroblasts. The wild type alpha 1BAR was rapidly phosphorylated upon exposure to the agonist epinephrine as well as to phorbol ester as assessed by immunoprecipitation of the receptor with antiserum raised against its amino-terminal portion. Exposure of cells expressing the wild type alpha 1BAR to epinephrine resulted also in rapid homologous desensitization of receptor-mediated response on polyphosphoinositide hydrolysis. On the other hand, truncation of the serine- and threonine-rich carboxyl portion of the alpha 1BAR abolished agonist-induced phosphorylation and greatly impaired homologous desensitization of the receptor. The truncated receptor T368 could undergo agonist-induced decrease of cell surface receptors but to a lesser extent, as compared with the wild type alpha 1BAR. These results demonstrate that the carboxyl portion of the alpha 1BAR plays a crucial role in the regulation of receptor function. They also suggest a strong relationship between agonist-induced phosphorylation and desensitization of the alpha 1BAR, which were both insensitive to the inhibitor of protein kinase C RO-318220. Our findings support the emerging hypothesis that the biochemical mechanisms involved in rapid agonist-dependent regulation of G protein-coupled receptors, which activate polyphosphoinositide hydrolysis, do not primarily involve protein kinase C.
Resumo:
Neuropeptide Y (NPY) is a vasoconstrictor peptide possibly involved in the regulation of renal sodium handling and renin release. This investigation was undertaken to assess in conscious normotensive rats the acute effects of a non-pressor dose of NPY on renal plasma flow, glomerular filtration rate, sodium excretion and plasma renin activity. Experiments were also performed during concomitant beta-adrenoceptor stimulation with isoproterenol. NPY per se had no effect on the studied parameters. Renal plasma flow was increased by isoproterenol and was significantly higher when the beta-adrenoceptor stimulant was infused alone (13.4 +/- 2.1 ml/min, p < 0.05, mean +/- SEM) that when administered together with NPY (7.2 +/- 2.0 ml/min). This was also true for glomerular filtration rate (3.3 +/- 0.3 vs. 1.8 +/- 0.3 ml/min, p < 0.01) and plasma renin activity (6.3 +/- 1.7 vs. 2.1 +/- 0.4 ng Ang I/ml/h, p < 0.05). Our data however do not allow to deduce whether the inhibitory effect of NPY on isoproterenol-induced renin release is mediated by changes in intrarenal hemodynamics or a direct effect on juxtaglomerular cells.
Resumo:
The α(1b)-adrenergic receptor (AR) was, after rhodopsin, the first G protein-coupled receptor (GPCR) in which point mutations were shown to trigger constitutive (agonist-independent) activity. Constitutively activating mutations have been found in other AR subtypes as well as in several GPCRs. This chapter briefly summarizes the main findings on constitutively active mutants of the α(1a)- and α(1b)-AR subtypes and the methods used to predict activating mutations, to measure constitutive activity of Gq-coupled receptors and to investigate inverse agonism. In addition, it highlights the implications of studies on constitutively active AR mutants on elucidating the molecular mechanisms of receptor activation and drug action.
Resumo:
OBJECTIVES: The role of beta-blockers in the treatment of hypertension is discussed controversially and the data showing a clear benefit in acute coronary syndromes (ACS) were obtained in the thrombolysis era. The goal of this study was to analyze the role of pretreatment with beta-blockers in patients with ACS. METHODS: Using data from the Acute Myocardial Infarction in Switzerland (AMIS Plus) registry, we analyzed outcomes of patients with beta-blocker pretreatment in whom they were continued during hospitalization (group A), those without beta-blocker pretreatment but with administration after admission (group B) and those who never received them (group C). Major adverse cardiac events defined as composed endpoint of re-infarction and stroke (during hospitalization) and/or in-hospital death were compared between the groups. RESULTS: A total of 24,709 patients were included in the study (6,234 in group A, 12,344 in group B, 6,131 in group C). Patients of group B were younger compared to patients of group A and C (62.5, 67.6 and 68.4, respectively). In the multivariate analysis, odds ratio for major adverse cardiac events was 0.59 (CI 0.47-0.74) for group A and 0.66 (CI 0.55-0.83) for group B, while group C was taken as a reference. CONCLUSIONS: beta-Blocker therapy is beneficial in ACS and they should be started in those who are not pretreated and continued in stable patients who had been on chronic beta-blocker therapy before.
Resumo:
Recent data indicate that bradykinin participates in the regulation of neonatal glomerular function and also acts as a growth regulator during renal development. The aim of the present study was to investigate the involvement of bradykinin in the maturation of renal function. Bradykinin beta2-receptors of newborn rabbits were inhibited for 4 days by Hoe 140. The animals were treated with 300 microg/kg s.c. Hoe 140 (group Hoe, n = 8) or 0.9% NaCl (group control, n = 8) twice daily. Clearance studies were performed in anesthetized rabbits at the age of 8-9 days. Bradykinin receptor blockade did not impair kidney growth, as demonstrated by similar kidney weights in the two groups, nor did it influence blood pressure. Renal blood flow was higher, while renal vascular resistance and filtration fraction were lower in Hoe 140-treated rabbits. No difference in glomerular filtration rate was observed. The unexpectedly higher renal perfusion observed in group Hoe cannot be explained by the blockade of the known vasodilator and trophic effect of bradykinin. Our results indicate that in intact kallikrein-kinin system is necessary for the normal functional development of the kidney.
Resumo:
Excessive proliferation of vascular wall cells underlies the development of elevated vascular resistance in hypoxic pulmonary hypertension (PH), but the responsible mechanisms remain unclear. Growth-promoting effects of catecholamines may contribute. Hypoxemia causes sympathoexcitation, and prolonged stimulation of alpha(1)-adrenoceptors (alpha(1)-ARs) induces hypertrophy and hyperplasia of arterial smooth muscle cells and adventitial fibroblasts. Catecholamine trophic actions in arteries are enhanced when other conditions favoring growth or remodeling are present, e.g., injury or altered shear stress, in isolated pulmonary arteries from rats with hypoxic PH. The present study examined the hypothesis that catecholamines contribute to pulmonary vascular remodeling in vivo in hypoxic PH. Mice genetically deficient in norepinephrine and epinephrine production [dopamine beta-hydroxylase(-/-) (DBH(-/-))] or alpha(1)-ARs were examined for alterations in PH, cardiac hypertrophy, and vascular remodeling after 21 days exposure to normobaric 0.1 inspired oxygen fraction (Fi(O(2))). A decrease in the lumen area and an increase in the wall thickness of arteries were strongly inhibited in knockout mice (order of extent of inhibition: DBH(-/-) = alpha(1D)-AR(-/-) > alpha(1B)-AR(-/-)). Distal muscularization of small arterioles was also reduced (DBH(-/-) > alpha(1D)-AR(-/-) > alpha(1B)-AR(-/-) mice). Despite these reductions, increases in right ventricular pressure and hypertrophy were not attenuated in DBH(-/-) and alpha(1B)-AR(-/-) mice. However, hematocrit increased more in these mice, possibly as a consequence of impaired cardiovascular activation that occurs during reduction of Fi(O(2)). In contrast, in alpha(1D)-AR(-/-) mice, where hematocrit increased the same as in wild-type mice, right ventricular pressure was reduced. These data suggest that catecholamine stimulation of alpha(1B)- and alpha(1D)-ARs contributes significantly to vascular remodeling in hypoxic PH.
Resumo:
Inhibitory receptors mediate CD8 T-cell hyporesponsiveness against cancer and infectious diseases. PD-1 and CTLA-4 have been extensively studied, and blocking antibodies have already shown clinical benefit for cancer patients. Only little is known on extended co-expression of inhibitory receptors and their ligands. Here we analyzed the expression of eight inhibitory receptors by tumor-antigen specific CD8 T-cells. We found that the majority of effector T-cells simultaneously expressed four or more of the inhibitory receptors BTLA, TIM-3, LAG-3, KRLG-1, 2B4, CD160, PD-1 and CTLA-4. There were major differences depending on antigen-specificity, differentiation and anatomical localization of T-cells. On the other hand, naive T-cells were only single or double positive for BTLA and TIM-3. Extended co-expression is likely relevant for effector T-cells, as we found expression of multiple ligands in metastatic lesions of melanoma patients. Together, our data suggest that naive T-cells are primarily regulated by BTLA and TIM-3, whereas effector cells interact via larger numbers of inhibitory receptors. Blocking multiple inhibitory receptors simultaneously or sequentially may improve T-cell based therapies, but further studies are necessary to clarify the role of each receptor-ligand pair.