826 resultados para Rapid Screen
Resumo:
Using a subtractive hybridisation approach, we enriched for genes likely to play a role in embryonic development of the mammalian face and other structures. This was achieved by subtracting cDNA derived from adult mouse liver from that derived from 10.5 dpc mouse embryonic branchial arches 1 and 2. Random sequencing of clones from the resultant library revealed that a high percentage correspond to genes with a previously established role in embryonic development and disease, while 15% represent novel or uncharacterised genes. Whole mount in situ hybridisation analysis of novel genes revealed that approximately 50% have restricted expression during embryonic development. In addition to expression in branchial arches, these genes showed a range of expression domains commonly including neural tube and somites. Notably, all genes analysed were found to be expressed not only in the branchial arches but also in the developing limb buds, providing support for the hypothesis that development of the limbs and face is likely to involve analogous molecular processes. (C) 2003 Wiley-Liss, Inc.
Resumo:
The Paradise whiptail (Pentapodus paradiseus) has distinct reflective stripes on its head and body. The reflective stripes contain a dense layer of physiologically active iridophores, which act as multilayer reflectors. The wavelengths reflected by these stripes can change from blue to red in 0.25 s. Transmission electron microscopy revealed that the iridophore cells contain plates that are, on average, 51.4 nm thick. This thickness produces a stack, which acts as an ideal quarter-wavelength multilayer reflector (equal optical thickness of plates and spaces) in the blue, but not the red, region of the spectrum. When skin preparations were placed into hyposmotic physiological saline, the peak wavelength of the reflected light shifted towards the longer (red) end of the visible spectrum. Hyperosmotic saline reversed this effect and shifted the peak wavelength towards shorter (blue/UV) wavelengths. Norepinephrine (100 mumol l(-1)) shifted the peak wavelength towards the longer end of the spectrum, while adenosine (100 mumol l(-1)) reversed the effects of norepinephrine. The results from this study show that the wavelength changes are elicited by a change of similar to70 nm in the distance between adjacent plates in the iridophore cells.
Resumo:
The role of sunscreens in preventing skin cancer and melanoma is the focus of ongoing research. Currently, there is no objective measure which can be used in field studies to determine whether a person has applied sunscreen to their skin, and researchers must use indirect assessments such as questionnaires. We sought to develop a rapid, non-invasive method for identifying sunscreen on the skin for use in epidemiological studies. Our basic method is to swab the skin, elute any residues which have been adsorbed onto the swab by rinsing in ethanol, and submit the eluted washings for spectrophotometric analysis. In a controlled study, we applied 0.1 ml of sunscreen to a 50 cm(2) grid on both forearms of 21 volunteers. Each forearm was allocated one of 10 different sunscreen brands. The skin was swabbed after intervals of 20 min, 1 h, 2 h and 4 h. In a field study conducted among 12 children aged 2-4 years attending a child care centre, sunscreen was applied to the faces of half the children. Swabs were then taken from the face and back of all children without knowledge of sunscreen status. In the controlled study, sunscreen was clearly detectable up to 2 h after application for all brands containing organic sunscreen, and marginally detectable at 4 h. In the field study, this method correctly identified all children with and without sunscreen. We conclude that spectrophotometric analysis of skin swabs can reliably detect the presence of sunscreen on the skin for up to 2 It after application. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
In standard cylindrical gradient coils consisting of a single layer of wires, a limiting factor in achieving very large magnetic field gradients is the rapid increase in coil resistance with efficiency. This is a particular problem in small-bore scanners, such as those used for MR microscopy. By adopting a multi-layer design in which the coil wires are allowed to spread out into multiple layers wound at increasing radii, a more favourable scaling of resistance with efficiency is achieved, thus allowing the design of more powerful gradient coils with acceptable resistance values. Previously this approach has been applied to the design of unshielded, longitudinal, and transverse gradient coils. Here, the multi-layer approach has been extended to allow the design of actively shielded multi-layer gradient coils, and also to produce coils exhibiting enhanced cooling characteristics. An iterative approach to modelling the steady-state temperature distribution within the coil has also been developed. Results indicate that a good level of screening can be achieved in multi-layer coils, that small versions of such coils can yield higher efficiencies at fixed resistance than conventional two-layer (primary and screen) coils, and that performance improves as the number of layers of increases. Simulations show that by optimising multi-layer coils for cooling it is possible to achieve significantly higher gradient strengths at a fixed maximum operating temperature. A four-layer coil of 8 mm inner diameter has been constructed and used to test the steady-state temperature model. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
Innovative Developments in Virtual and Physical Prototyping
Resumo:
Rapid prototyping (RP) is an approach for automatically building a physical object through solid freeform fabrication. Nowadays, RP has become a vital aspect of most product development processes, due to the significant competitive advantages it offers compared to traditional manual model making. Even in academic environments, it is important to be able to quickly create accurate physical representations of concept solutions. Some of these can be used for simple visual validation, while others can be employed for ergonomic assessment by potential users or even for physical testing. However, the cost of traditional RP methods prevents their use in most academic environments on a regular basis, and even for very preliminary prototypes in many small companies. That results in delaying the first physical prototypes to later stages, or creating very rough mock-ups which are not as useful as they could be. In this paper we propose an approach for rapid and inexpensive model-making, which was developed in an academic context, and which can be employed for a variety of objects.
Resumo:
This article reports on a-Si:H-based low-leakage blue-enhanced photodiodes for dual-screen x-ray imaging detectors. Doped nanocrystalline silicon was incorporated in both the n- and p-type regions to reduce absorption losses for light incoming from the top and bottom screens. The photodiode exhibits a dark current density of 900 pA/cm(2) and an external quantum efficiency up to 90% at a reverse bias of 5 V. In the case of illumination through the tailored p-layer, the quantum efficiency of 60% at a 400 nm wavelength is almost double that for the conventional a-Si:H n-i-p photodiode.
Computational evaluation of hydraulic system behaviour with entrapped air under rapid pressurization
Resumo:
The pressurization of hydraulic systems containing entrapped air is considered a critical condition for the infrastructure's security due to transient pressure variations often occurred. The objective of the present study is the computational evaluation of trends observed in variation of maximum surge pressure resulting from rapid pressurizations. The comparison of the results with those obtained in previous studies is also undertaken. A brief state of art in this domain is presented. This research work is applied to an experimental system having entrapped air in the top of a vertical pipe section. The evaluation is developed through the elastic model based on the method of characteristics, considering a moving liquid boundary, with the results being compared with those achieved with the rigid liquid column model.
Computational evaluation of hydraulic system behaviour with entrapped air under rapid pressurization
Resumo:
The pressurization of hydraulic systems containing entrapped air is considered a critical condition for the infrastructure's security due to transient pressure variations often occurred. The objective of the present study is the computational evaluation of trends observed in variation of maximum surge pressure resulting from rapid pressurizations. The comparison of the results with those obtained in previous studies is also undertaken. A brief state of art in this domain is presented. This research work is applied to an experimental system having entrapped air in the top of a vertical pipe section. The evaluation is developed through the elastic model based on the method of characteristics, considering a moving liquid boundary, with the results being compared with those achieved with the rigid liquid column model.
Resumo:
INTRODUÇÃO: Programas de investigação epidemiológica e de ação no âmbito da violência familiar estão em franca ascensão, requerendo instrumentos de aferição adaptados e vertidos para o português. O objetivo do estudo é avaliar a equivalência semântica entre o original em inglês e duas versões para o português do instrumento Abuse Assessment Screen (AAS) usado no rastreamento de casos de violência contra a mulher grávida e recomendar uma versão-síntese para uso corrente. MÉTODOS: O processo de avaliação de equivalência semântica envolveu quatro etapas: tradução, retradução, apreciação formal de equivalência e crítica final através de consultas com especialista na área temática. RESULTADOS: Para cada item do instrumento apresentam-se os resultados relativos às quatro etapas. O texto cobre cada passo do processo que levou à versão final. As duas versões mostraram-se bastante semelhantes, com 14 das 15 assertivas similares, embora a segunda versão tenha se mostrado mais adequada, ainda que para alguns itens tenha sido decidido juntar as duas versões ou mesmo utilizar um item oriundo da versão um. CONCLUSÃO: É importante usar mais de uma versão no processo, em várias etapas de avaliação e de crítica, e discutir a pertinência de se acrescentar uma etapa adicional de interlocução do instrumento com membros da população-alvo.
Resumo:
There is an imminent need for rapid methods to detect and determine pathogenic bacteria in food products as alternatives to the laborious and time-consuming culture procedures. In this work, an electrochemical immunoassay using iron/gold core/shell nanoparticles (Fe@Au) conjugated with anti-Salmonella antibodies was developed. The chemical synthesis and functionalization of magnetic and gold-coated magnetic nanoparticles is reported. Fe@Au nanoparticles were functionalized with different self-assembled monolayers and characterized using ultraviolet-visible spectrometry, transmission electron microscopy, and voltammetric techniques. The determination of Salmonella typhimurium, on screen-printed carbon electrodes, was performed by square-wave anodic stripping voltammetry through the use of CdS nanocrystals. The calibration curve was established between 1×101 and 1×106 cells/mL and the limit of detection was 13 cells/mL. The developed method showed that it is possible to determine the bacteria in milk at low concentrations and is suitable for the rapid (less than 1 h) and sensitive detection of S. typhimurium in real samples. Therefore, the developed methodology could contribute to the improvement of the quality control of food samples.
Resumo:
Celiac disease is a gluten-induced autoimmune enteropathy characterized by the presence of tissue tranglutaminase (tTG) autoantibodies. A disposable electrochemical immunosensor (EI) for the detection of IgA and IgG type anti-tTG autoantibodies in real patient’s samples is presented. Screen-printed carbon electrodes (SPCE) nanostructurized with carbon nanotubes and gold nanoparticles were used as the transducer surface. This transducer exhibits the excellent characteristics of carbon–metal nanoparticle hybrid conjugation and led to the amplification of the immunological interaction. The immunosensing strategy consisted of the immobilization of tTG on the nanostructured electrode surface followed by the electrochemical detection of the autoantibodies present in the samples using an alkaline phosphatase (AP) labelled anti-human IgA or IgG antibody. The analytical signal was based on the anodic redissolution of enzymatically generated silver by cyclic voltammetry. The results obtained were corroborated with a commercial ELISA kit indicating that the electrochemical immunosensor is a trustful analytical screening tool.