403 resultados para Radiopharmaceutical 18F-FDG


Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To quantify the relationship between bone marrow (BM) response to radiation and radiation dose by using (18)F-labeled fluorodeoxyglucose positron emission tomography [(18)F]FDG-PET standard uptake values (SUV) and to correlate these findings with hematological toxicity (HT) in cervical cancer (CC) patients treated with chemoradiation therapy (CRT). METHODS AND MATERIALS: Seventeen women with a diagnosis of CC were treated with standard doses of CRT. All patients underwent pre- and post-therapy [(18)F]FDG-PET/computed tomography (CT). Hemograms were obtained before and during treatment and 3 months after treatment and at last follow-up. Pelvic bone was autosegmented as total bone marrow (BMTOT). Active bone marrow (BMACT) was contoured based on SUV greater than the mean SUV of BMTOT. The volumes (V) of each region receiving 10, 20, 30, and 40 Gy (V10, V20, V30, and V40, respectively) were calculated. Metabolic volume histograms and voxel SUV map response graphs were created. Relative changes in SUV before and after therapy were calculated by separating SUV voxels into radiation therapy dose ranges of 5 Gy. The relationships among SUV decrease, radiation dose, and HT were investigated using multiple regression models. RESULTS: Mean relative pre-post-therapy SUV reductions in BMTOT and BMACT were 27% and 38%, respectively. BMACT volume was significantly reduced after treatment (from 651.5 to 231.6 cm(3), respectively; P<.0001). BMACT V30 was significantly correlated with a reduction in BMACT SUV (R(2), 0.14; P<.001). The reduction in BMACT SUV significantly correlated with reduction in white blood cells (WBCs) at 3 months post-treatment (R(2), 0.27; P=.04) and at last follow-up (R(2), 0.25; P=.04). Different dosimetric parameters of BMTOT and BMACT correlated with long-term hematological outcome. CONCLUSIONS: The volumes of BMTOT and BMACT that are exposed to even relatively low doses of radiation are associated with a decrease in WBC counts following CRT. The loss in proliferative BM SUV uptake translates into low WBC nadirs after treatment. These results suggest the potential of intensity modulated radiation therapy to spare BMTOT to reduce long-term hematological toxicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: In the radiopharmaceutical therapy approach to the fight against cancer, in particular when it comes to translating laboratory results to the clinical setting, modeling has served as an invaluable tool for guidance and for understanding the processes operating at the cellular level and how these relate to macroscopic observables. Tumor control probability (TCP) is the dosimetric end point quantity of choice which relates to experimental and clinical data: it requires knowledge of individual cellular absorbed doses since it depends on the assessment of the treatment's ability to kill each and every cell. Macroscopic tumors, seen in both clinical and experimental studies, contain too many cells to be modeled individually in Monte Carlo simulation; yet, in particular for low ratios of decays to cells, a cell-based model that does not smooth away statistical considerations associated with low activity is a necessity. The authors present here an adaptation of the simple sphere-based model from which cellular level dosimetry for macroscopic tumors and their end point quantities, such as TCP, may be extrapolated more reliably. METHODS: Ten homogenous spheres representing tumors of different sizes were constructed in GEANT4. The radionuclide 131I was randomly allowed to decay for each model size and for seven different ratios of number of decays to number of cells, N(r): 1000, 500, 200, 100, 50, 20, and 10 decays per cell. The deposited energy was collected in radial bins and divided by the bin mass to obtain the average bin absorbed dose. To simulate a cellular model, the number of cells present in each bin was calculated and an absorbed dose attributed to each cell equal to the bin average absorbed dose with a randomly determined adjustment based on a Gaussian probability distribution with a width equal to the statistical uncertainty consistent with the ratio of decays to cells, i.e., equal to Nr-1/2. From dose volume histograms the surviving fraction of cells, equivalent uniform dose (EUD), and TCP for the different scenarios were calculated. Comparably sized spherical models containing individual spherical cells (15 microm diameter) in hexagonal lattices were constructed, and Monte Carlo simulations were executed for all the same previous scenarios. The dosimetric quantities were calculated and compared to the adjusted simple sphere model results. The model was then applied to the Bortezomib-induced enzyme-targeted radiotherapy (BETR) strategy of targeting Epstein-Barr virus (EBV)-expressing cancers. RESULTS: The TCP values were comparable to within 2% between the adjusted simple sphere and full cellular models. Additionally, models were generated for a nonuniform distribution of activity, and results were compared between the adjusted spherical and cellular models with similar comparability. The TCP values from the experimental macroscopic tumor results were consistent with the experimental observations for BETR-treated 1 g EBV-expressing lymphoma tumors in mice. CONCLUSIONS: The adjusted spherical model presented here provides more accurate TCP values than simple spheres, on par with full cellular Monte Carlo simulations while maintaining the simplicity of the simple sphere model. This model provides a basis for complementing and understanding laboratory and clinical results pertaining to radiopharmaceutical therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Immunotherapy-responsive autoimmune CNS syndromes linked to antibodies targeting surface neuronal antigens lack reliable biomarkers of disease activity. We report serial cerebral (18)FDG PET studies in a woman with AMPA receptor (AMPA-R) autoimmune limbic encephalitis. During her follow-up, despite an aggressive immunotherapy, she displayed a persistent, predominantly left hippocampal FDG hypermetabolism, in the absence of CNS inflammatory signs. Brain metabolism abnormalities regressed after increasing antiepileptic treatment, correlating with a moderate clinical improvement. Brain (18)F-FDG PET could thus represent a useful complementary tool to orient the clinical follow-up.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The early diagnostic value of glucose hypometabolism and atrophy as potential neuroimaging biomarkers of mild cognitive impairment (MCI) and Alzheimer's disease (AD) have been extensively explored using [18F]fluorodeoxyglucose positron emission tomography (FDG-PET) and structural magnetic resonance imaging (MRI). The vast majority of previous imaging studies neglected the effects of single factors, such as age, symptom severity or time to conversion in MCI thus limiting generalisability of results across studies. Here, we investigated the impact of these factors on metabolic and structural differences. FDG-PET and MRI data from AD patients (n = 80), MCI converters (n = 65) and MCI non-converters (n = 64) were compared to data of healthy subjects (n = 79). All patient groups were split into subgroups by age, time to conversion (for MCI), or symptom severity and compared to the control group. AD patients showed a strongly age-dependent pattern, with younger patients showing significantly more extensive reductions in gray matter volume and glucose utilisation. In the MCI converter group, the amount of glucose utilisation reduction was linked to the time to conversion but not to atrophy. Our findings indicate that FDG-PET might be more closely linked to future cognitive decline whilst MRI being more closely related to the current cognitive state reflects potentially irreversible damage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A right heart metastasis of a small-cell lung cancer was found on the whole-body F-fluoro-deoxy-glucose positron emission tomography/computed tomography (F-FDG-PET/CT) of a 69-year-old smoker investigated for a right pulmonary mass discovered on chest radiography after a fracture of the right humerus. The PET scan showed an increased FDG uptake by the mass in the right lung and an intense, atypical focal activity of the right ventricle strongly suggestive of a neoplastic process. CT-guided lung biopsy revealed a small-cell lung cancer and myocardial biopsy confirmed the presence of a cardiac metastasis. The patient was treated with six cycles of chemotherapy followed by radiation therapy, which included the heart lesion. At follow-up PET/CT 2 months after the end of treatment, the abnormal cardiac uptake had disappeared, whereas increased FDG uptake persisted in the pulmonary residual mass.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a 53-year-old man with a vocal cord paralysis observed as a primary manifestation of lung carcinoma. Tc-99m MDP whole body bone scan were performed and resulted a normal scintiscan. The bone scan does not revealed suspicious foci of uptake. The possibility of bone metastasis was taken into consideration. A whole body F18-FDG-PET scan showed intense uptake in the left upper lung corresponding to the primary tumor. A bronchial biopsy confirmed infiltration by small cell lung carcinoma (SCLC). SCLC is composed of poorly differentiated, rapidly growing cells with disease usually occurring centrally rather than peripherally. It metastasizes early. The whole-body F18-FDG-PET scan clearly demonstrated a focus of increased uptake in the second lumbar vertebral body suspicious for osteolytic metastasis. A lytic bone metastasis was confirmed by MRI. The patient then received therapy and underwent follow up abdominal CT. The scan showed blastic changes in the L2 vertebra suggesting response to treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: αvβ3 integrin is of great interest for tumor targeting because of its high concentration in tumor tissue. It recognizes ligands containing an arginine-glycine-aspartate motif (RGD), and a number of RGD-containing peptides have been developed as PET imaging probes of angiogenesis. We synthesized a series of 18F-labeled cyclic-[RGDfK] peptides for in vivo imaging of αvβ3 expression. Our F-18 labeled prosthetic groups were attached to the αvβ3 ligand via click chemistry, and the reaction conditions (time, temperature, solvent and pH) were optimized by using single modified amino acids.Methods: Seven amino acids were selected considering their different biochemical properties (polarity, total charge, presence of aromatic ring and heteroatom). All the amino acids were modified by the introduction of azido moiety to allow the interaction with alkyne prosthetic groups. Once the conditions of the click chemistry were optimized, the prosthetic groups were also coupled with the cyclic-[RGDfK] exhibiting an azido function. 4- Trimethylammonium-nitrobenzene triflate was used as precursor for the radiosynthesis of the prosthetic groups. The fluorination was carried out with K2CO3/K2.2.2 in CH3CN at 95 oC, and the nitro group was reduced with NaBH4 and Pd/C in MeOH. The resulting 18F-aniline was subsequently coupled to alkynoic acids to yield the final F-18 labeled prosthetic groups. Finally, the prosthetic groups were attached to the peptides via Huisgen's cycloaddition. Figure 1. F-18 labeled αvβ3 ligand.Results: Our new prosthetic groups were successfully clicked to the modified amino acids and to the cyclic- [RGDfK], and the reactions were almost quantitative within 1 to 3.5 h. The pH of the reaction did not influence the reaction kinetic and yield. The four steps of the F-18 labeling were completely automated providing the final products in quantities and yields practical for PET imaging. IC50 values of our ligands for αvβ3 and α5β1 demonstrated a high selectivity of our compounds towards αvβ3, as well as the negligible effect of the prosthetic groups on the affinity of the ligand to its receptor, as confirmed by the prediction of the molecular modeling.Conclusions: We have successfully synthesized novel F-18 labeled prosthetic groups, as well as novel PET imaging probes of αvβ3 expression. The reaction conditions of the Huisgen's cycloaddition were optimized with selected modified amino acids, and subsequently transposed to the cyclic-[RGDfK] peptide. IC50 data demonstrate that our 18F-labeled ligands were selective for αvβ3. In vivo microPET/CT studies in tumor bearing mice are underway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: Effective cancer treatment generally requires combination therapy. The combination of external beam therapy (XRT) with radiopharmaceutical therapy (RPT) requires accurate three-dimensional dose calculations to avoid toxicity and evaluate efficacy. We have developed and tested a treatment planning method, using the patient-specific three-dimensional dosimetry package 3D-RD, for sequentially combined RPT/XRT therapy designed to limit toxicity to organs at risk. METHODS AND MATERIALS: The biologic effective dose (BED) was used to translate voxelized RPT absorbed dose (D(RPT)) values into a normalized total dose (or equivalent 2-Gy-fraction XRT absorbed dose), NTD(RPT) map. The BED was calculated numerically using an algorithmic approach, which enabled a more accurate calculation of BED and NTD(RPT). A treatment plan from the combined Samarium-153 and external beam was designed that would deliver a tumoricidal dose while delivering no more than 50 Gy of NTD(sum) to the spinal cord of a patient with a paraspinal tumor. RESULTS: The average voxel NTD(RPT) to tumor from RPT was 22.6 Gy (range, 1-85 Gy); the maximum spinal cord voxel NTD(RPT) from RPT was 6.8 Gy. The combined therapy NTD(sum) to tumor was 71.5 Gy (range, 40-135 Gy) for a maximum voxel spinal cord NTD(sum) equal to the maximum tolerated dose of 50 Gy. CONCLUSIONS: A method that enables real-time treatment planning of combined RPT-XRT has been developed. By implementing a more generalized conversion between the dose values from the two modalities and an activity-based treatment of partial volume effects, the reliability of combination therapy treatment planning has been expanded.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Le présent travail a eu comme but la comparaison de la performance de deux méthodes d'imagerie diagnostique pour la détection de métastases hépatiques du mélanome uvéal : la tomographie d'émission par positons au F-18-fluorodésoxyglucose (TEP FDG) couplée à la tomodensitométrie (TDM) et l'imagerie par résonance magnétique (IRM). Dans cette étude rétrospective, nous avons analysé les données radiologiques de patients inclus dans une étude multicentrique randomisée de phase III de l'Uveal Melanoma Group of the European Organization for Research and Treatment of Cancer (EORTC). L'IRM s'est révélée nettement plus sensible que le FDG-PET/CT pour mettre en évidence les métastases hépatiques notamment de taille infra-centimétrique. Néanmoins, l'analyse des changements de l'accumulation du traceur métabolique par les métastases hépatiques au cours du traitement suggère la possibilité d'évaluer, de manière précoce, la réponse des métastases hépatiques à la chimiothérapie. Le nombre de cas étudiés est trop faible pour déterminer la précision et la valeur clinique d'une telle évaluation mais les résultats obtenus dans cette étude pilote justifient une étude plus étendue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radioterapia é uma importante alternativa de tratamento curativo em pacientes com câncer do pulmão não de pequenas células. Entretanto, pulmões são muito sensíveis à radiação e isto aumenta a importância em se delimitar o volume a ser irradiado com precisão. Ultimamente, a tomografia por emissão de pósitron (PET) e a tomografia computadorizada (TC) são feitas de forma combinada, e a literatura sugere que seu impacto no planejamento da radioterapia é significativo. Ao se utilizar exames de PET/TC no planejamento da radioterapia é importante reconhecer e adaptar-se às diferenças entre os equipamentos de diagnóstico e de tratamento. Este texto discute alguns dos problemas técnicos que devem ser resolvidos quando se incorpora PET no planejamento radioterápico.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJETIVO: O presente experimento visa a validar um protocolo de aquisição em 3D na tomografia por emissão de pósitrons, em substituição ao modo 2D, de forma a reduzir a dose de radiação nos pacientes, sem perda da qualidade de imagens. MATERIAIS E MÉTODOS: Foram realizadas 27 simulações em equipamento Discovery ST, nos modos 2D com quatro minutos de aquisição e 3D com dois e quatro minutos. Utilizou-se um simulador do protocolo da National Electrical Manufacturers Association. No interior deste simulador estão inseridas seis esferas com diferentes diâmetros para a determinação da qualidade de imagem. As aquisições foram comparadas por três médicos nucleares, sem que eles identificassem o modo de aquisição. Cada observador atribuiu o valor igual a 1 quando alguma esfera não foi identificada ou valor 2 para esferas visíveis. RESULTADOS: A análise qualitativa pelo kappa generalizado demonstrou que a frequência de esferas visíveis foi maior no modo 3D com quatro minutos (85%) e a porcentagem de concordância também foi maior (88,9%), com kappa generalizado = 0,725 [0,507;0,942]. CONCLUSÃO: O modo 3D com quatro minutos de aquisição e com menores atividades de FDG-18F pode ser utilizado em pacientes com biótipo equivalente ao simulador, sem perda de qualidade de imagem.