991 resultados para Radiology, nuclear medicine
Resumo:
Purpose: To evaluate the changes over time in the pattern and extent of parenchymal abnormalities in asbestos-exposed workers after cessation of exposure and to compare 3 proposed semiquantitative methods with a careful side-by-side comparison of the initial and the follow-Lip computed tomography (CT) images. Materials and Methods: The study included 52 male asbestos workers (mean age SD, 62.2y +/- 8.2) who had baseline high-resolution CT after cessation of exposure and follow-up CT 3 to 5 years later. Two independent thoracic radiologists quantified the findings according to the scoring systems proposed by Huuskonen, Gamsu, and Sette and then did a side-by-side comparison of the 2 sets of scans without awareness of the dates of the CT scans. Results: There was no difference in the prevalence of the 2 most common parenchymal abnormalities (centrilobular small dotlike or branching opacities and interstitial lines) between the initial and follow-up CT scans. Honeycombing (20%) and traction bronchiectasis and bronchiolectasis (50%) were seen more commonly on the follow-up CT than on the initial examination (10% and 33%, respectively) (P = 0.01). Increased extent of parenchymal abnormalities was evident on side-by-side comparison in 42 (81%) patients but resulted in an increase in score in at least 1 semiquantitative system in only 16 (31%) patients (all P > 0.01, signed test). Conclusions: The majority of patients with previous asbestos exposure show evidence of progression of disease on CT at 3 to 5 years follow-up but this progression is usually not detected by the 3 proposed semiquantitative scoring schemes.
Resumo:
Inhomogeneities in the spatial distribution of the excitatory Radio Frequency (RF) field, are still a dominant source of artifacts and loss of signal to noise ratio in MR imaging experiments, A number of strategies have been proposed to quantify this distribution, However, in this technical note we present a relatively simple MR imaging procedure which can be used to visualise RF inhomogeneities directly either by means of the magnitude or the phase of an image. To visualise the RF field distribution in both the inner and outer volumes of the coil, we have performed experiments in which the entire coil is submerged in a non-conducting fluid, To the best of our knowledge this strategy has not been used previously in order to evaluate coil performance, Finally, we demonstrate that the method is sensitive enough to reveal the effects of the sample properties on the effective RF wavelength of the transmitted field. (C) 1997 Elsevier Science Inc.
Resumo:
Background Accurate diagnosis of portal vein (PV) stenosis by real-time and color Doppler US (CD-US) after segmental liver transplantation in children can decrease morbidity by avoiding unnecessary biopsy, PV hypertension, thrombosis and loss of the graft. Objective To evaluate CD-US parameters for the prediction of PV stenosis after segmental liver transplantation in children. Materials and methods We retrospectively reviewed 61 CD-US examinations measuring the diameter at the PV anastomosis, velocities at the anastomosis (PV1) and in the segment proximal to the anastomosis (PV2), and the PV1/PV2 velocity ratio. The study group comprised patients with stenosis confirmed by angiography and the control group comprised patients with a good clinical outcome. Results PV stenosis was seen in 12 CD-US examinations. The mean PV diameter was smaller in the study group (2.6 mm versus 5.7 mm) and a PV diameter of < 3.5 mm was highly predictive of stenosis (sensitivity 100%, specificity 91.8%). Conclusion A PV diameter of < 3.5 mm is a highly predictive CD-US parameter for the detection of hemodynamically significant stenosis on angiography.
Resumo:
Cryoablative therapies have been proposed to palliate pain from soft-tissue or osteolytic bone tumors. A case of a patient with painful thoracic and sacral spine sclerotic metastases successfully treated by image-guided percutaneous cryoablation with the aid of insulation techniques and thermosensors is reported in this case report.
Resumo:
Radiation dose calculations in nuclear medicine depend on quantification of activity via planar and/or tomographic imaging methods. However, both methods have inherent limitations, and the accuracy of activity estimates varies with object size, background levels, and other variables. The goal of this study was to evaluate the limitations of quantitative imaging with planar and single photon emission computed tomography (SPECT) approaches, with a focus on activity quantification for use in calculating absorbed dose estimates for normal organs and tumors. To do this we studied a series of phantoms of varying complexity of geometry, with three radionuclides whose decay schemes varied from simple to complex. Four aqueous concentrations of (99m)Tc, (131)I, and (111)In (74, 185, 370, and 740 kBq mL(-1)) were placed in spheres of four different sizes in a water-filled phantom, with three different levels of activity in the surrounding water. Planar and SPECT images of the phantoms were obtained on a modern SPECT/computed tomography (CT) system. These radionuclides and concentration/background studies were repeated using a cardiac phantom and a modified torso phantom with liver and ""tumor"" regions containing the radionuclide concentrations and with the same varying background levels. Planar quantification was performed using the geometric mean approach, with attenuation correction (AC), and with and without scatter corrections (SC and NSC). SPECT images were reconstructed using attenuation maps (AM) for AC; scatter windows were used to perform SC during image reconstruction. For spherical sources with corrected data, good accuracy was observed (generally within +/- 10% of known values) for the largest sphere (11.5 mL) and for both planar and SPECT methods with (99m)Tc and (131)I, but were poorest and deviated from known values for smaller objects, most notably for (111)In. SPECT quantification was affected by the partial volume effect in smaller objects and generally showed larger errors than the planar results in these cases for all radionuclides. For the cardiac phantom, results were the most accurate of all of the experiments for all radionuclides. Background subtraction was an important factor influencing these results. The contribution of scattered photons was important in quantification with (131)I; if scatter was not accounted for, activity tended to be overestimated using planar quantification methods. For the torso phantom experiments, results show a clear underestimation of activity when compared to previous experiment with spherical sources for all radionuclides. Despite some variations that were observed as the level of background increased, the SPECT results were more consistent across different activity concentrations. Planar or SPECT quantification on state-of-the-art gamma cameras with appropriate quantitative processing can provide accuracies of better than 10% for large objects and modest target-to-background concentrations; however when smaller objects are used, in the presence of higher background, and for nuclides with more complex decay schemes, SPECT quantification methods generally produce better results. Health Phys. 99(5):688-701; 2010
Resumo:
Purpose: Erlotinib, an oral tyrosine kinase inhibitor, is active against head-and-neck squamous cell carcinoma (HNSCC) and possibly has a synergistic interaction with chemotherapy and radiotherapy. We investigated the safety and efficacy of erlotinib added to cisplatin and radiotherapy in locally advanced HNSCC. Methods and Materials: In this Phase I/II trial 100 mg/m(2) of cisplatin was administered on Days 8, 29, and 50, and radiotherapy at 70 Gy was started on Day 8. During Phase I, the erlotinib dose was escalated (50 mg, 100 mg, and 150 mg) in consecutive cohorts of 3 patients, starting on Day 1 and continuing during radiotherapy. Dose-limiting toxicity was defined as any Grade 4 event requiring radiotherapy interruptions. Phase 11 was initiated 8 weeks after the last Phase I enrollment. Results: The study accrued 9 patients in Phase I and 28 in Phase II; all were evaluable for efficacy and safety. No dose-limiting toxicity occurred in Phase I, and the recommended Phase 11 dose was 150 mg. The most frequent nonhematologic toxicities were nausea/vomiting, dysphagia, stomatitis, xerostomia and in-field dermatitis, acneiform rash, and diarrhea. Of the 31 patients receiving a 150-mg daily dose of erlotinib, 23 (74%; 95% confidence interval, 56.8%-86.3%) had a complete response, 3 were disease free after salvage surgery, 4 had inoperable residual disease, and 1 died of sepsis during treatment. With a median 37 months` follow-up, the 3-year progression-free and overall survival rates were 61% and 72%, respectively. Conclusions: This combination appears safe, has encouraging activity, and deserves further studies in locally advanced HNSCC. (C) 2010 Elsevier Inc.
Resumo:
The identification, modeling, and analysis of interactions between nodes of neural systems in the human brain have become the aim of interest of many studies in neuroscience. The complex neural network structure and its correlations with brain functions have played a role in all areas of neuroscience, including the comprehension of cognitive and emotional processing. Indeed, understanding how information is stored, retrieved, processed, and transmitted is one of the ultimate challenges in brain research. In this context, in functional neuroimaging, connectivity analysis is a major tool for the exploration and characterization of the information flow between specialized brain regions. In most functional magnetic resonance imaging (fMRI) studies, connectivity analysis is carried out by first selecting regions of interest (ROI) and then calculating an average BOLD time series (across the voxels in each cluster). Some studies have shown that the average may not be a good choice and have suggested, as an alternative, the use of principal component analysis (PCA) to extract the principal eigen-time series from the ROI(s). In this paper, we introduce a novel approach called cluster Granger analysis (CGA) to study connectivity between ROIs. The main aim of this method was to employ multiple eigen-time series in each ROI to avoid temporal information loss during identification of Granger causality. Such information loss is inherent in averaging (e.g., to yield a single ""representative"" time series per ROI). This, in turn, may lead to a lack of power in detecting connections. The proposed approach is based on multivariate statistical analysis and integrates PCA and partial canonical correlation in a framework of Granger causality for clusters (sets) of time series. We also describe an algorithm for statistical significance testing based on bootstrapping. By using Monte Carlo simulations, we show that the proposed approach outperforms conventional Granger causality analysis (i.e., using representative time series extracted by signal averaging or first principal components estimation from ROIs). The usefulness of the CGA approach in real fMRI data is illustrated in an experiment using human faces expressing emotions. With this data set, the proposed approach suggested the presence of significantly more connections between the ROIs than were detected using a single representative time series in each ROI. (c) 2010 Elsevier Inc. All rights reserved.
Resumo:
Three carbohydrate conjugated dipicolylamine chelators, 2-bis(2-pyridinylmethyl)amino)ethyl 1-deoxy-1-thio-beta-D-glucopyranoside (L(1)), 2-bis(2-pyridinylmethyl)amino)ethyl-beta-D-glucopyranoside (L(2)), and 2-bis(2-pyridinylmethyl)amino)carboxamide-N-(2-amino-2-deoxy-D-glucopyranose) (L(3)) were complexed to the [M(Co)(3)](+) core (M=Tc, Re) and the properties of the resulting complexes were investigated. Synthesis and characterization of the chelator 2-bis(2-pyridinylmethyl)amino)ethyl 1-deoxy-1-thio-beta-D-glucopyranoside (L(1)) and the corresponding Re complex are reported. All chelators were radiolabeled in high yield with [(99)mTc(CO)(3)(H(2)O)(3)](+) ( > 98%) and [(186)Re(CO)(3)(H(2)O)(3)](+) ( > 80%). The chelators and Re-complexes were determined to not be substrates for the glucose metabolism enzyme hexokinase. However, the biodistribution of each of the (99m)Tc complexes demonstrated fast clearance from most background tissue, including >75% clearance of the activity in the kidneys and the liver within 2 h post-injection. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Wernicke`s encephalopathy (WE) is a serious neurological disorder secondary to thiamine deficiency. Improved recognition by radiologists and allied health providers of the different clinical settings and imaging findings associated with this emergency can optimise the management of this condition and help prevent its severe consequences. The aim of this study is to illustrate the broad clinicoradiological spectrum of non-alcoholic WE, while emphasising atypical MRI findings.
Resumo:
Simultaneous acquisition of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) aims to disentangle the description of brain processes by exploiting the advantages of each technique. Most studies in this field focus on exploring the relationships between fMRI signals and the power spectrum at some specific frequency bands (alpha, beta, etc.). On the other hand, brain mapping of EEG signals (e.g., interictal spikes in epileptic patients) usually assumes an haemodynamic response function for a parametric analysis applying the GLM, as a rough approximation. The integration of the information provided by the high spatial resolution of MR images and the high temporal resolution of EEG may be improved by referencing them by transfer functions, which allows the identification of neural driven areas without strong assumptions about haemodynamic response shapes or brain haemodynamic`s homogeneity. The difference on sampling rate is the first obstacle for a full integration of EEG and fMRI information. Moreover, a parametric specification of a function representing the commonalities of both signals is not established. In this study, we introduce a new data-driven method for estimating the transfer function from EEG signal to fMRI signal at EEG sampling rate. This approach avoids EEG subsampling to fMRI time resolution and naturally provides a test for EEG predictive power over BOLD signal fluctuations, in a well-established statistical framework. We illustrate this concept in resting state (eyes closed) and visual simultaneous fMRI-EEG experiments. The results point out that it is possible to predict the BOLD fluctuations in occipital cortex by using EEG measurements. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Purpose: To compare the sparing potential of cerebral hemispheres with intensity-modulated radiotherapy (IMRT) and three-dimensional conformal radiotherapy (3D-CRT) for whole-ventricular irradiation (WVI) and conventional whole-brain irradiation (WBI) in the management of localized central nervous system germ cell tumors (CNSGCTs). Methods and Materials: Ten cases of patients with localized CNSGCTs and submitted to WVI by use of IMRT with or without a ""boost"" to the primary lesion were selected. For comparison purposes, similar treatment plans were produced by use of 3D-CRT (WVI with or without boost) and WBI (opposed lateral fields with or without boost), and cerebral hemisphere sparing was evaluated at dose levels ranging from 2 Gy to 40 Gy. Results: The median prescription dose for WVI was 30.6 Gy (range, 25.2-37.5 Gy), and that for the boost was 16.5 Gy (range, 0-23.4 Gy). Mean irradiated cerebral hemisphere volumes were lower for WVI with IMRT than for 3D-CRT and were lower for WVI with 3D-CRT than for WBI. Intensity-modulated radiotherapy was associated with the lowest irradiated volumes, with reductions of 7.5%, 12.2%, and 9.0% at dose levels., compared with 3D-CRT. Intensity-modulated radiotherapy provided of 20, 30, and 40 Gy, respectively statistically significant reductions of median irradiated volumes at all dose levels (p = 0.002 or less). However, estimated radiation doses to peripheral areas of the body were 1.9 times higher with IMRT than with 3D-CRT. Conclusions: Although IMRT is associated with increased radiation doses to peripheral areas of the body, its use can spare a significant amount of normal central nervous system tissue compared with 3D-CRT or WBI in the setting of CNSGCT treatment. (C) 2010 Elsevier Inc.
Resumo:
Resting state functional magnetic resonance imaging (fMRI) reveals a distinct network of correlated brain function representing a default mode state of the human brain The underlying structural basis of this functional connectivity pattern is still widely unexplored We combined fractional anisotropy measures of fiber tract integrity derived from diffusion tensor imaging (DTI) and resting state fMRI data obtained at 3 Tesla from 20 healthy elderly subjects (56 to 83 years of age) to determine white matter microstructure e 7 underlying default mode connectivity We hypothesized that the functional connectivity between the posterior cingulate and hippocampus from resting state fMRI data Would be associated with the white matter microstructure in the cingulate bundle and fiber tracts connecting posterior cingulate gyrus With lateral temporal lobes, medial temporal lobes, and precuneus This was demonstrated at the p<0001 level using a voxel-based multivariate analysis of covariance (MANCOVA) approach In addition, we used a data-driven technique of joint independent component analysis (ICA) that uncovers spatial pattern that are linked across modalities. It revealed a pattern of white matter tracts including cingulate bundle and associated fiber tracts resembling the findings from the hypothesis-driven analysis and was linked to the pattern of default mode network (DMN) connectivity in the resting state fMRI data Out findings support the notion that the functional connectivity between the posterior cingulate and hippocampus and the functional connectivity across the entire DMN is based oil distinct pattern of anatomical connectivity within the cerebral white matter (C) 2009 Elsevier Inc All rights reserved
Resumo:
The purpose of this study was to evaluate the mid- and long-term results of percutaneous transhepatic cholangiography (PTC) and biliary drainage in children with isolated bilioenteric anastomotic stenosis (BAS) after pediatric liver transplantation. Sixty-four children underwent PTC from March 1993 to May 2008. Nineteen cholangiograms were normal; 10 showed intrahepatic biliary stenosis and BAS, and 35 showed isolated BAS. Cadaveric grafts were used in 19 and living donor grafts in 16 patients. Four patients received a whole liver, and 31 patients received a left lobe or left lateral segment. Roux-en-Y hepaticojejunostomy was performed in all patients. Indication for PTC was based on clinical, laboratory, and histopathologic findings. In patients with isolated BAS, dilation and biliary catheter placement, with changes every 2 months, were performed. Patients were separated into 4 groups according to number of treatment sessions required. The drainage catheter was removed if cholangiogram showed no significant residual stenosis and normal biliary emptying time after a minimum of 6 months. The relationship between risk factors (recipient`s weight < 10 kg, previous exposure to Cytomegalovirus, donor-recipient sex and weight relations, autoimmune disease as indication for transplantion, previous Kasai`s surgery, use of reduced liver grafts, chronic or acute rejection occurrence) and treatment was evaluated. Before PTC, fever was observed in 46%, biliary dilation in 23%, increased bilirubin in 57%, and increased gamma-glutamyltransferase (GGT) in 100% of patients. In the group with BAS, 24 of 35 (69%) patients had histopathologic findings of cholestasis as did 9 of 19 (47%) patients in the group with normal PTC. Of the 35 patients, 23 (65.7%) needed 1 (group I), 7 needed 2 (group II), 4 needed 3 (group III), and 1 needed 4 treatment sessions (group IV). The best results were observed after 1 treatment session, and the mean duration of catheter placement and replacement was 10 months. The primary patency rate was 61.2%, and the recurrence rate was 34.3% (group I). Seven patients (7 of 35; 20%) had their stricture treated with a second treatment session (group II). The average drainage time in group II was 24 months. During a period > 20 months, 4 patients (4 of 35; 11.4%) required 1 additional treatment session (group III), and 1 patient (1 of 35; 2.9%) had a catheter placed at the end of the study period (group IV). Drainage time in group I was significantly shorter than those in groups II, III, and IV (p < 0.05). There was no statistically significant relation between therapeutic response and the selected risk factors (p > 0.05). The majority of complications, such as catheter displacement and leakage, were classified as minor; however, 2 patients (5.7%) with hemobilia were noted. Complications increased according to the need for reintervention. In conclusion, balloon dilation and percutaneous drainage placement is safe and effective, and it has long-term patency for children with BAS after liver transplantation. Because of prolonged treatment time, reintervention may be necessary, thereby increasing the complication rate. Balloon dilation and percutaneous drainage placement should be considered as the first treatment option because of its minimally invasive nature.
Resumo:
Helminthic diseases have a worldwide distribution. They affect billions of people in endemic areas and can result in serious clinical complications. Some parasites have a human gastrointestinal life cycle with resultant abdominal manifestations. However, the symptoms of helminthic diseases are usually nonspecific. Radiologic imaging, along with the identification of risk factors, may help narrow the differential diagnosis. To avoid diagnostic delays, radiologists should be familiar with the geographic distribution, transmission cycle, and characteristic and atypical manifestations of common helminthic diseases at abdominal imaging with radiography, computed tomography, magnetic resonance imaging, and ultrasonography. Awareness of the clinical, epidemiologic, and pathogenic characteristics of these diseases also may be helpful for narrowing the diagnosis when imaging features are nonspecific. (c) RSNA, 2010 . radiographics.rsna.org
Resumo:
OBJECTIVE To examine cortical thickness and volumetric changes in the cortex of patients with polymicrogyria, using an automated image analysis algorithm. METHODS Cortical thickness of patients with polymicrogyria was measured using magnetic resonance imaging (MRI) cortical surface-based analysis and compared with age-and sex-matched healthy subjects. We studied 3 patients with disorder of cortical development (DCD), classified as polymicrogyria, and 15 controls. Two experienced neuroradiologists performed a conventional visual assessment of the MRIs. The same data were analyzed using an automated algorithm for tissue segmentation and classification. Group and individual average maps of cortical thickness differences were produced by cortical surface-based statistical analysis. RESULTS Patients with polymicrogyria showed increased thickness of the cortex in the same areas identified as abnormal by radiologists. We also identified a reduction in the volume and thickness of cortex within additional areas of apparently normal cortex relative to controls. CONCLUSIONS Our findings indicate that there may be regions of reduced cortical thickness, which appear normal from radiological analysis, in the cortex of patients with polymicrogyria. This finding suggests that alterations in neuronal migration may have an impact in the cortical formation of the cortical areas that are visually normal. These areas are associated or occur concurrently with polymicrogyria.