979 resultados para Quantum States
Resumo:
We investigate the violation of noncontextuality by a class of continuous-variable states, including variations of entangled coherent states and a two-mode continuous superposition of coherent states. We generalize the Kochen-Specker (KS) inequality discussed by Cabello [A. Cabello, Phys. Rev. Lett. 101, 210401 (2008)] by using effective bidimensional observables implemented through physical operations acting on continuous-variable states, in a way similar to an approach to the falsification of Bell-Clauser-Horne-Shimony-Holt inequalities put forward recently. We test for state-independent violation of KS inequalities under variable degrees of state entanglement and mixedness. We then demonstrate theoretically the violation of a KS inequality for any two-mode state by using pseudospin observables and a generalized quasiprobability function.
Resumo:
The state disturbance induced by locally measuring a quantum system yields a signature of nonclassical correlations beyond entanglement. Here, we present a detailed study of such correlations for two-qubit mixed states. To overcome the asymmetry of quantum discord and the unfaithfulness of measurement-induced disturbance (severely overestimating quantum correlations), we propose an ameliorated measurement-induced disturbance as nonclassicality indicator, optimized over joint local measurements, and we derive its closed expression for relevant two-qubit states. We study its analytical relation with discord, and characterize the maximally quantum-correlated mixed states, that simultaneously extremize both quantifiers at given von Neumann entropy: among all two-qubit states, these states possess the most robust quantum correlations against noise.
Resumo:
We explore experimentally the space of two-qubit quantum-correlated mixed states, including frontier states as defined by the use of quantum discord and von Neumann entropy. Our experimental setup is flexible enough to allow for high-quality generation of a vast variety of states. We address quantitatively the relation between quantum discord and a recently suggested alternative measure of quantum correlations.
Resumo:
We consider blocks of quantum spins in a chain at thermal equilibrium, focusing on their properties from a thermodynamical perspective. In a classical system the temperature behaves as an intensive magnitude, above a certain block size, regardless of the actual value of the temperature itself. However, a deviation from this behavior is expected in quantum systems. In particular, we see that under some conditions the description of the blocks as thermal states with the same global temperature as the whole chain fails. We analyze this issue by employing the quantum fidelity as a figure of merit, singling out in detail the departure from the classical behavior. As it may be expected, we see that quantum features are more prominent at low temperatures and are affected by the presence of zero-temperature quantum phase transitions. Interestingly, we show that the blocks can be considered indeed as thermal states with a high fidelity, provided an effective local temperature is properly identified. Such a result may originate from typical properties of reduced subsystems of energy-constrained Hilbert spaces. Finally, the relation between local and global temperatures is analyzed as a function of the size of the blocks and the system parameters.
Resumo:
We report the experimental demonstration of two quantum networking protocols, namely quantum 1 -> 3 telecloning and open-destination teleportation, implemented using a four-qubit register whose state is encoded in a high-quality two-photon hyperentangled Dicke state. The state resource is characterized using criteria based on multipartite entanglement witnesses. We explore the characteristic entanglement-sharing structure of a Dicke state by implementing high-fidelity projections of the four-qubit resource onto lower-dimensional states. Our work demonstrates for the first time the usefulness of Dicke states for quantum information processing.
Resumo:
These notes originated out of a set of lectures in Quantum Optics and Quantum Information given by one of us (MGAP) at the University of Napoli and the University of Milano. A quite broad set of issues are covered, ranging from elementary concepts to current research topics, and from fundamental concepts to applications. A special emphasis has been given to the phase space analysis of quantum dynamics and to the role of Gaussian states in continuous variable quantum information.
Resumo:
Optomechanics is currently believed to provide a promising route towards the achievement of genuine quantum effects at the large, massive-system scale. By using a recently proposed figure of merit that is well suited to address continuous-variable systems, in this paper we analyze the requirements needed for the state of a mechanical mode (embodied by an end-cavity cantilever or a membrane placed within an optical cavity) to be qualified as macroscopic. We show that, according to the phase space-based criterion that we have chosen for our quantitative analysis, the state achieved through strong single-photon radiation-pressure coupling to a quantized field of light and conditioned by measurements operated on the latter might be interpreted as macroscopically quantum. In general, though, genuine macroscopic quantum superpositions appear to be possible only under quite demanding experimental conditions
Resumo:
We consider an optomechanical quantum system composed of a single cavity mode interacting with N mechanical resonators. We propose a scheme for generating continuous-variable graph states of arbitrary size and shape, including the so-called cluster states for universal quantum computation. The main feature of this scheme is that, differently from previous approaches, the graph states are hosted in the mechanical degrees of freedom rather than in the radiative ones. Specifically, via a 2N-tone drive, we engineer a linear Hamiltonian which is instrumental to dissipatively drive the system to the desired target state. The robustness of this scheme is assessed against finite interaction times and mechanical noise, confirming it as a valuable approach towards quantum state engineering for continuous-variable computation in a solid-state platform.
Resumo:
We present an imaginary-time path-integral study of the problem of quantum decay of a metastable state of a uniaxial magnetic particle placed in the magnetic field at an arbitrary angle. Our findings agree with earlier results of Zaslavskii obtained by mapping the spin Hamiltonian onto a particle Hamiltonian. In the limit of low barrier, weak dependence of the decay rate on the angle is found, except for the field which is almost normal to the anisotropy axis, where the rate is sharply peaked, and for the field approaching the parallel orientation, where the rate rapidly goes to zero. This distinct angular dependence, together with the dependence of the rate on the field strength, provides an independent test for macroscopic spin tunneling.
Resumo:
A very high level of theoretical treatment (complete active space self-consistent field CASSCF/MRCI/aug-cc-pV5Z) was used to characterize the spectroscopic properties of a manifold of quartet and doublet states of the species BeP, as yet experimentally unknown. Potential energy curves for 11 electronic states were obtained, as well as the associated vibrational energy levels, and a whole set of spectroscopic constants. Dipole moment functions and vibrationally averaged dipole moments were also evaluated. Similarities and differences between BeN and BeP were analysed along with the isovalent SiB species. The molecule BeP has a X (4)Sigma(-) ground state, with an equilibrium bond distance of 2.073 angstrom, and a harmonic frequency of 516.2 cm(-1); it is followed closely by the states (2)Pi (R(e) = 2.081 angstrom, omega(e) = 639.6 cm(-1)) and (2)Sigma(-) (R(e) = 2.074 angstrom, omega(e) = 536.5 cm(-1)), at 502 and 1976 cm(-1), respectively. The other quartets investigated, A (4)Pi (R(e) = 1.991 angstrom, omega(e) = 555.3 cm(-1)) and B (4)Sigma(-) (R(e) = 2.758 angstrom, omega(e) = 292.2 cm(-1)) lie at 13 291 and 24 394 cm(-1), respectively. The remaining doublets ((2)Delta, (2)Sigma(+)(2) and (2)Pi(3)) all fall below 28 000 cm(-1). Avoided crossings between the (2)Sigma(+) states and between the (2)Pi states add an extra complexity to this manifold of states.
Resumo:
The polarization effects of in-plane electric fields and eccentricity on electronic and optical properties of semiconductor quantum rings (QRs) are discussed within the effective-mass approximation. As eccentric rings may appropriately describe real (grown or fabricated) QRs, their energy spectrum is studied. The interplay between applied electric fields and eccentricity is analysed, and their polarization effects are found to compensate for appropriate values of eccentricity and field intensity. The importance of applied fields in tailoring the properties of different nanoscale materials and structures is stressed.
Resumo:
Orthogonality criterion is used to show in a very simple and general way that anomalous bound-state solutions for the Coulomb potential (hydrino states) do not exist as bona fide solutions of the Schrodinger, Klein-Gordon and Dirac equations. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
An algebraic reformulation of the Bohr-Sommerfeld (BS) quantization rule is suggested and applied to the study of bound states in one-dimensional quantum wells. The energies obtained with the present quantization rule are compared to those obtained with the usual BS and WKB quantization rules and with the exact solution of the Schrodinger equation. We find that, in diverse cases of physical interest in molecular physics, the present quantization rule not only yields a good approximation to the exact solution of the Schrodinger equation, but yields more precise energies than those obtained with the usual BS and/or WKB quantization rules. Among the examples considered numerically are the Poeschl-Teller potential and several anharmonic oscillator potentials. which simulate molecular vibrational spectra and the problem of an isolated quantum well structure subject to an external electric field.
Resumo:
In this reply to the comment on 'Quantization rules for bound states in quantum wells' we point out some interesting differences between the supersymmetric Wentzel-Kramers-Brillouin (WKB) quantization rule and a matrix generalization of usual WKB (mWKB) and Bohr-Sommerfeld (mBS) quantization rules suggested by us. There are certain advantages in each of the supersymmetric WKB (SWKB), mWKB and mBS quantization rules. Depending on the quantum well, one of these could be more useful than the other and it is premature to claim unconditional superiority of SWKB over mWKB and mBS quantization rules.