1000 resultados para Química - Enseñanza
Resumo:
Se parte de que el conocimiento de la nomenclatura y formulación química es indispensable para comprender, razonar, y expresar los procesos químicos. Se expone la importancia de la estructuración de los objetivos del aprendizaje y de las metas que se debe marcar el profesor para la mejora de la calidad de la enseñanza. Se hace una subdivisión de objetivos parciales de aprendizaje con el fin de logras estas metas. Se construyen unos organigramas referentes a cada uno de los objetivos: clasificación de la materia; notación internacional de un elemento químico; concepto de peso atómico; significado de los símbolos químicos; concepto y cálculo de pesos moleculares; problemática de la determinación de una fórmula química; significado de una fórmula química; notación internacional de una sustancia compuesta ; paralelismo entre los conceptos relativos a átomo y molécula; concepto general de isótopo, en donde se muestran la graduación de conceptos y la relación e interdepedencia para alcanzar las metas de aprendizaje.
Resumo:
Se describe una propuesta metodológica para facilitar la formulación de la Química Inorgánica por medio de esquemas. Para cada tipo de compuesto se debe indagar acerca de su referencia química, considerar la fórmula general representativa del grupo y asimilar las normas concretas de nomenclatura. En cada esquema se pretende establecer relaciones cualitativas entre los diferentes tipos de compuestos que pueden originarse a partir de las combinaciones químicamente posibles entre los distintos elementos, el oxígeno y el hidrógeno.
Resumo:
Se pretende que el alumno de bachillerato adquiera los conocimientos de formulación básicos en Química. Para ello se ha de hacer el aprendizaje progresivo y más atractivo. En el segundo curso de BUP se persiguen los siguientes objetivos: 1) Ideas claras sobre los elementos químicos y sus estructuras. 2) Sistema periódico de los elementos. 3) Valencia iónica. 4) Valencia covalente. 5) Nomenclatura y formulación de combinaciones simples. 6) Nomenclatura y formulación de hidruros y óxidos. 7) Nomenclatura y formulación de ácidos. Se aspira a dominar las formulaciones clásica, sistemática y de Stock, excepto en los ácidos, que sólo se aprenderán según la nomenclatura clásica. 92 alumnos de segundo curso de BUP del Instituto 'Arquitecto Pedro Gumiel' de Alcalá de Henares, Madrid . Se realiza una primera de nivel de conocimientos químicos a través del ordenador. El resultado es muy pobre tanto para conocimientos de Química como para habilidades informáticas. A los alumnos, en general, les atrae lo novedoso de la prueba. Los datos obtenidos se tratan estadísticamente. Se elabora una gráfica de frecuencias con el número de alumnos y las calificaciones obtenidas. Se obtienen los parámetros característicos de media, moda, varianza y desviación típica. Se facilita a los alumnos material didáctico de formulación práctica, para el que se utilizan los cuatro primeros capítulos del libro 'Formulación Práctica de Química', escrito por los autores de la investigación. Se expone el proceso de enseñanza y aprendizaje de la formulación química a través de la utilización de la aplicación informática 'CONTROL', elaborada en BASIC por Cristóbal Lara López, para ordenador ZX-Spectrum 48 K. Se sigue el siguiente proceso para la aplicación del curso: 1) Se realiza el montaje y se comprueba el tema correspondiente. Del casette dónde se encuentra la lección se pasa a la memoria del ordenador. 2) Se distribuye el material de consulta y auxiliar preciso. 3) El alumno comienza el tema ante el ordenador y siguiendo las explicaciones del profesor, cuando sean necesarias. 4) El alumno consulta textos o tablas cuando así lo solicite el programa. 5) Se realizan los ejercicios y el profesor va evaluando los resultados parciales obtenidos. 6) Se pasa al tema siguiente si los resultados son satisfactorios. El ordenador sólo indica la validez de las respuestas correctas. Terminado el proceso de aprendizaje, se realiza una evaluación final al alumnado. 1) La mayoría de los alumnos no sabía escribir a máquina y desconocía el manejo de un ordenador, por lo que el aprendizaje implicaba una lentitud inicial. 2) El alumno va siguiendo un proceso continuo de autoevaluación con incentivos motivados por lo espectacular de las presentaciones en el ordenador. 3) El alumnado muestra un interés general por lo novedoso del proceso de aprendizaje. 1) Se inicia al alumno en el manejo de la máquina de escribir. 2) El alumnado aprende a manejar un ordenador y familiarizarse con él. 3) El aprendizaje a través del ordenador provoca que el alumno muestre mayor interés y concentración en el tema que se está estudiando. 4) Los gran mayoría de los alumnos adquieren una base aceptable de formulación química. 5) Los alumnos que no consiguen adquirir la base, precisan de más tiempo y más ordenadores para alcanzar los niveles mínimos. 6) Los alumnos que muestran mayor interés ante este proceso de aprendizaje consiguen alcanzar puntuaciones máximas. 7) Se demuestra que el uso didáctico del ordenador es muy útil en el aprendizaje de la formulación química.
Resumo:
Estudiar y evaluar la eficacia didáctica de la simulación de procesos físicos en ordenadores. Diseñar un conjunto de prácticas de laboratorio junto a un proceso de contrastación que signifique la diferencia con los métodos tradicionales. 2 grupos de tercero de BUP y 4 de segundo de BUP, aproximadamente 20 alumnos por grupo. Diseño experimental intrasujeto de 5 grupos. Variable independiente: Método didáctico, con 2 niveles: método tradicional y método experimental con ordenador. Variable dependiente: Rendimiento, operativizado mediante una prueba de evaluación, y las opiniones y actitudes suscitadas por el método empleado, operativizado por medio de un cuestionario. El procedimiento consiste en diseñar 7 unidades didácticas. Todos los grupos pasan por todas las unidades y en cada una dos de ellas actúan como control y tres como experimental. Se controló la variable inteligencia. Raven. Test de Secuencias Dominó. Encuesta de actitud hacia la Informática. Microordenador Commodore 64. Pruebas de rendimiento. Comentarios subjetivos. Prueba de significación estadística. Índice de correlación. 1. Aunque la inversión inicial que requiere la adquisición de un ordenador sea tres veces la de un equipo standard de los usados en los Institutos de Bachillerato para las prácticas de laboratorio, el ordenador permite realizar prácticas a las que dicho equipo no puede acceder por falta de medios materiales (equipos de mecánica, calor, óptica y electricidad). 2. El ordenador no puede suplir totalmente las prácticas de laboratorio con los fenómenos reales, tiene una función complementaria y sustitutiva para ciertas prácticas en las que la adecuación de la vinculación a fenómenos reales se considera satisfactoria. 3. Sería conveniente centralizar por distritos el material didáctico disponible (software), con el fin de que se pudiera acceder a él con facilidad, así como unificar y compatibilizar el material informático (Hardware) entre los distintos centros para facilitar el intercambio de información. 4. El ordenador motiva al alumno en su aprendizaje. A pesar de ser demasiado pronto para sacar conclusiones del papel del ordenador en la enseñanza, se le puede considerar como un instrumento valioso que aporta un enriquecimiento a la tecnología didáctica.
Resumo:
Elaboración y preparación de una multimedia para la enseñanza a distancia de la Química-Física sobre el potencial químico, dirigido al tercer curso de Químicas en la asignatura de Termodinámica. Consiste en el análisis de técnicas audiovisuales que sirvan de instrumentos para la educación, con fines preferentemente didácticos y en consecuencia, elaborar una multimedia que cumpla con dichos fines. Primera fase: después de analizar diferentes técnicas audiovisuales se ha optado por la técnica denominada multimedia, que tiende a conservar la configuración de las unidades didácticas que se imparten en cada disciplina por la Universidad a Distancia. Segunda fase: elaboración de la multimedia. Esta consta de: texto de información para el conocimiento de cada tema (material escrito e impreso); serie de ejercicios de autocomprobación (material escrito); audiovisual constituido por un diaporama de 120 diapositivas más la parte sonora, liberado de aporte teórico (grabado de vidocasete) e inclusión de una simulación (ejercicios numéricos o experimento de laboratorio) haciendo uso de las técnicas de enseñanza por ordenador. Análisis comparativo de las diferentes técnicas audiovisuales y la evaluación de sus resultados en la enseñanza a distancia durante los años que se llevan utilizando. Conocidas las dificultades con que tropieza la Universidad a Distancia en las disciplinas científicas con trabajos experimentales (prácticas), el desarrollo de la multimedia aporta las siguientes soluciones: el estudiante a distancia tiene la posibilidad de autoevaluar su nivel de aprendizaje; puede prepararse para las evaluaciones que tiene que rendir en la universidad, le aporta información que le motiva para el estudio del tema. La simulación aporta una gran versatilidad en los cálculos y experimentos y el alumno desarrolla un diálogo con el procesador que le permite saber a cada paso del proceso de simulación su evaluación de cómo realiza el ejercicio. De alguna manera suple la falta de una enseñanza directa. El experimento realizado es concluyente en cuanto a las posibilidades de preparar material didáctico en la Universidad a Distancia para muchas disciplinas. Este material puede incluso ser asequible a los estudiantes sin un costo excesivo en su adquisición. De otra parte, habría que lograr una red de microprocesadores que sirvieran de aparatos de reproducción y de utilización del material de paso.
Resumo:
Contrastar las opiniones de profesores y alumnos sobre las dificultades que surgen al solucionar problemas de Química. Analizar algunas de las dificultades que surgen al resolver problemas. Estudiar cuáles son los tipos de enunciados que escogen los alumnos cuando se les da posiblidad de elegir entre diferentes tipos de problemas en los exámenes. Analizar las ideas de los estudiantes sobre los conceptos de masa y su conservación. Plantear algunas posibles vías de trabajo en la enseñanza/aprendizaje de resolución de problemas. 800 estudiantes de diferentes centros y niveles (de 13 a 20 años): estudiantes del último curso de EGB, de BUP, COU, FP y de Escuela Universitaria del profesorado. Se toman como punto de partida las investigaciones sobre resolución de problemas científicos. Igualmente, se utiliza como fuente de información los trabajos existentes sobre el principio de la conservación de la masa en transformaciones físicas y químicas. Se prepararon y contrastaron encuestas para profesores y estudiantes, que fueron analizadas y comparadas. Se han analizado más detenidamente dos dificultades: la comprensión del problema y la utilización de conocimientos. El estudio de la comprensión de enunciados se ha realizado mediante el análisis de ejercicios, explicaciones, entrevistas personales y discusiones en grupo. Se analizan en diferentes enunciados la influencia de algunos aspectos como: el tipo de lenguaje, posibilidad de identificación, o la carga de información que lleva. Las opiniones de profesores y estudiantes sobre dificultades en la resolución de problemas coinciden en el desconocimiento de los procesos o estrategias de resolución como una de las causas del fracaso de resolución de problemas. No existe coincidencia entre ambos grupos para otras dificultades. En los profesores destaca el considerar factor importante la falta de conocimientos y de trabajo personal de los estudiantes. Los alumnos consideran alta la dificultad de comprensión del problema. Los estudiantes no reconocen en el enunciado de un problema la facilidad o dificultad de su resolución cuando éste no es facilmente identificable con un modelo previo. Un alto porcentaje de estudiantes define el concepto de masa y la Ley de su conservación y cree comprenderlo bien.
Resumo:
Conseguir un aprendizaje significativo de los procesos de resolución de problemas al implicar al estudiante en la comprensión de la tarea que esta realizando y en la revisión personal de sus estrategias de trabajo. 10 grupos desde el curso de segundo de BUP a COU. Este trabajo se limita a la resolución de problemas-ejercicios de corte convencional y por consiguiente cerrados. El problema utilizado de Física y Química. Se resuelve previamente en su forma más tradicional y, posteriormente, se analiza el proceso seguido, en forma de esquema similar a un diagrama de flujo que representa cada uno de los pasos que han sido necesarios para la resolución. Estos pasos pueden ser operativos, de transformación de unidades, aplicaciones de leyes y fórmulas. Por otra parte, se analizan en el problema ya resuelto, los conocimientos teóricos que han sido necesarios a lo largo de todo el proceso y cuya ignorancia y olvido puede imposibilitar la resolución total o parcial del problema. La resolución de un problema-ejercicio supone para muchos alumnos la realización de una serie de operaciones a menudo mecánicas que han aprendido por repetición. Desde el punto de vista del aprendizaje, la realización del esquema de resolución del problema ayuda al alumno a: reflexionar sobre sus procesos de pensamiento, comprender la importancia de los conocimientos teóricos y sus relaciones, para su aplicación a los problemas, diferenciar la importancia de las dificultades a las que ha de enfrentarse, comprensión del enunciado, necesidad de conocimientos sobre el tema, etc., conocer los errores cometidos, para evaluar su trabajo con mayor objetividad. Referido a la enseñanza ofrece ayuda al profesor para: analizar el grado de dificultad de los problemas que propone, situar la importancia de la enseñanza de los problemas en la comprensión de procesos, establecer con facilidad la similitud del proceso de resolución en problemas con enunciados muy diferentes, simplificar a la vez que hacer más rigurosa la corrección, detectar los errores más frecuentes cometidos por los alumnos.
Resumo:
Comprobar los efectos de un tratamiento de cambio atribucional, que se aplica en un contexto real de rendimiento académico, sobre diversas variables relevantes para el logro escolar. Verificar la eficacia del tratamiento para mejorar el rendimiento, la atribución causal, la motivación y la autoeficacia de los alumnos. Planteamiento de diversas hipótesis. 577 alumnos de primero y segundo de BUP de Matemáticas y Física-Química de dos IB dotados con departamentos de Orientación. Dentro de la muestra se han constituido, aleatoriamente, un grupo de control y un grupo experimental. La metodología empleada se enmarca dentro del paradigma experimental que intenta verificar las hipótesis emitidas mediante tests estadísticos. Las tareas de campo se extendieron a lo largo de un curso académico. La distribucion temporal de la intervención tuvo 4 fases. Primera fase: aplicaron los tests de inteligencia y aptitudes. Segunda fase: los alumnos recibieron sus primeras calificaciones y se aplicó la escala de dimensiones causales. En una sesión posterior se pasaron el cuestionario de motivación y la escala de autoeficacia. Asímismo, los profesores cumplimentaron el cuestionario del profesor. Tercera fase: comprendió la asignación de los alumnos a la condición de grupo control o grupo experimental y la aplicación del tratamiento placebo y experimental respectivamente. Cuarta fase: en los últimos días de clase se aplicaron el cuestionario y las escalas de nuevo, y los profesores cumplimentaron el cuestionario de profesores, otra vez. Las variables consideradas son: rendimiento académico, autoeficacia, motivación, atribución causal, centro, asignatura, sexo, control/experimental, éxito/fracaso objetivo, éxito/fracaso subjetivo, anterior/posterior, calificaciones. Instrumentos del tratamiento: viñetas y vídeo. Métodos correlacionales: correlaciones, regresión, comparaciones de medias, MANOVA. El análisis de los resultados parciales se centra en la comparación entre los grupos control y experimental. Las comparaciones van guiadas por las hipótesis previamente establecidas para las diferentes variables. (Consultar en la propia investigación). Algunos resultados globales son: 1. El efecto del tratamiento de entrenamiento reatribucional sobre la mejora del rendimiento académico, la autoeficacia y la motivación, son claros y evidentes, aunque sus magnitudes son moderadas. Sin embargo, en el aspecto causal, no hay conclusiones precisas sobre los cambios atributivos producidos. 2. Las dimensiones: intencionalidad y globalidad, son las más sensibles a los cambios del tratamiento de entrenamiento reatribucional. 3. Añaden algunos principios para mejorar la práctica educativa, desde la teoría de la atribucion causal.
Resumo:
Diseñar multimedias para abordar el estudio de los temas más significativos de Química en el ciclo 1 de la enseñanza superior de Ciencias, diseñar diferentes prototipos (objetivos, contenidos, actividades, evaluación, materiales de apoyo), completos en su información, dirigidos a la autoenseñanza del alumno o como ayuda didáctica al profesorado y de la coordinación de la didáctica de la Química. Contenidos de Química en el primer ciclo de las facultades de Ciencias. Medios y métodos didácticos. Significatividad dentro de las áreas en que se divide la Química, interés didáctico y asequibilidad para el alumnado. Para confeccionar los multimedia: a) objetivos, generales y específicos, de conocimiento, aplicación, análisis y comprensión; b) contenidos: conceptos científicos, justificación teórica, experiencias cruciales, dispositivos y técnicas actuales, aproximación histórico cultural; c) actividades: ejercicios de reflexión y aplicación de contenidos, con respuesta; d) evaluación: tests de autoevaluación, con respuestas; e) medios y materiales didácticos: gráficas, figuras, tablas numéricas, diapositivas y transparencias. Criterios de selección de contenidos: esquematismo, brevedad, información completa, operatividad, concrección, nivel, actualidad, interés didáctico. Metodología usada en los multimedias: combinación o superposición de los elementos citados. Se han elaborado siete multimedias: 1) primer principio de la termodinámica; 2) viscosidad de los fluidos; 3) reacciones orgánicas; 4) reacciones de adición nucleófila; 5) introducción a la Química de la coordinación; 6) de los aminoacidos a las proteínas y 7) defectos en sólidos. Constan de: objetivos generales y específicos (siguiendo la misma numeración arriba utilizada, multimedias 2,4,5 y 6); contenidos o conceptos científicos fundamentales (todos ejercicios de reflexión con respuestas razonadas, 1, 2, 4, 5 y 7); aproximación histórico cultural a los conceptos abordados, 1 y 5, tablas numéricas complementarias, 1, 2, 3, 4 y 7, diapositivas o transparencias, 1 y 4, bibliografía, 7, los multimedias 2, 3, 4 y 5, por su extensión, están además subdivididos en unidades didácticas. Primer intento de coordinar esta enseñanza para diferentes facultades de Ciencias. El uso concreto que de ellos se haga dependerá del nivel al que se dirijan y de la finalidad de sus usuarios (alumnos y profesores): autoenseñanza o instrumento de ayuda pedagógica el trabajo aquí iniciado se complementa con el realizado por un grupo de profesores de las universidades francesas de Poitiers, Coeu y Toulouse dedicados a la confección de otros multimedias, en la búsqueda de una mayor racionalidad en la enseñanza universitaria de la Química.
Resumo:
El artículo forma parte de un monográfico de la revista dedicado a la ciencia
Resumo:
El artículo forma parte de una sección de la revista dedicada a intercambio de experiencias. - Proyecto de Innovación Educativa disponible en la Consejería de Educación, Ciencia e Investigación de la Región de Murcia
Resumo:
Conocer los antecedentes y la evolución de la enseñanza de las ciencias experimentales en los niveles correspondientes a la educación secundaria a lo largo del primer tercio del siglo XX. Planes de estudio para la enseñanza secundaria en España, de 1900 a 1936. El trabajo se estructura en tres partes, la primera se dedica a la realización de un trabajo de revisión y análisis de los planes de estudio vigentes en el período estudiado incidiendo en la relevancia otorgada a las disciplinas de física y química. Para estudiar la evolución del currículum se analizan programas de los catedráticos de las materias y libros de texto de las mismas. La segunda parte se adentra en el estudio del profesorado (catedráticos de física y química de instituto): procedencia, acceso al cuerpo, influencia de la Junta para la Ampliación de Estudios, etc.). Como tercera parte se presenta un análisis de la evolución de estas enseñanzas (evolución de los objetivos, orientación, didácticas y metodologías, actividades, salidas y excursiones, etc.) y elaboración de conclusiones. Fuentes documentales primarias (expedientes administrativos, memorias de institutos, legislación, etc.) y biliografía. Investigación histórica. 1. Persistencia del modelo universitario como referencia en la segunda enseñanza frente a otros enfoques formativos y su recuperación en la enseñanza de las ciencias experimentales. 2. Durante la práctica totalidad del período estudiado se minusvaloró el tiempo dedicado a la enseñanza de las ciencias experimentales respecto a materias de letras debido a la escasa tradición que tenía en España la enseñanza de esas disciplinas y la subestimación de su valor formativo frente a otras materias. 3. La Junta para la Ampliación de Estudios jugó un papel fundamental en la formación científica de los licenciados en las facultades de ciencias y de los profesores de física y química en ejercicio en los centros dependientes de la Junta. 4. Se puede señalar como modélica la actividad y planteamiento del Instituto-Escuela de Madrid, creado en 1918.
Resumo:
El Método de simulación por redes (MESIR) aplicado a la resolución de problemas en ingeniería, aúna todo el potencial existente en la analogía termo-eléctrica con la potencia de los ordenadores. El registro del programa PROCCA-09 basado en el MESIR es resultado del trabajo de dos grupos de investigación de la UMU y la UPCT. Entre las ventajas de esta herramienta, en contraposición con las prácticas de laboratorio, podemos citar: es generalmente más económica, no tiene riesgos, portátil, fomenta el aprendizaje significativo, etc. En la comunicación se presentan algunas experiencias y resultados de la mejora del proceso de enseñanza-aprendizaje con esta herramienta