488 resultados para Probiotic
Resumo:
The effect of inulin and/or okara flour on Lactobacillus acidophilus La-5 and Bifidobacterium animalis Bb-12 viability in a fermented soy product (FSP) and on probiotic survival under in vitro simulated gastrointestinal conditions were investigated throughout 28 days of storage at 4 °C. Employing a 22 design, four FSP trials were produced from soymilk fermented with ABT-4 culture (La-5, Bb-12, and Streptococcus thermophilus): FSP (control); FSP-I (with inulin, 3 g/100 mL of soymilk); FSP-O (with okara, 5 g/100 mL); FSP-IO (with inulin + okara, ratio 3:5 g/100 mL). Probiotic viabilities ranged from 8 to 9 log cfu/g during the 28 days of storage, and inulin and/or okara flour did not affect the viability of La-5 and Bb-12. Bb-12 resistance to the artificial gastrointestinal juices was higher than for La-5, since the Bb-12 and La-5 populations decreased approximately 0.6 log cfu/g and 3.8 log cfu/g, respectively, throughout storage period. Even though the protective effect of inulin and/or okara flour on probiotic microorganisms was not significant, when compared to a fresh culture, the FSP matrix improved Bb-12 survival on day 1 of storage and may be considered a good vehicle for Bb-12 and could play an important role in probiotic protection against gastrointestinal juices. © 2013 Elsevier Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of the present study was to investigate the effect of isofl avones supplementation of a fermented soy product on its sensory acceptance, physicochemical properties and probiotic cell viable count. Additionally we also investigated the ability of the mixed starter cultures (Enterococcus faecium CRL 183 and Lactobacillus helveticus 416) to modify the isofl avones profi le of soy product during the fermentation process. Three products were analysed: soy product fermented with E. faecium CRL 183 and L. helveticus 416, isofl avonessupplemented soy product (fermented with E. faecium CRL 183 and L. helveticus 416; 50mg/100g, Isofl avin®, Galena, Brazil) and unfermented soy product. A panel of judges evaluated the acceptability of the samples on a nine point structured hedonic scale. The chemical composition namely fat, protein, ash and total carbohydrate contents, pH, enumeration of viable Lactobacillus spp. and Enterococcus spp. and quantifi cation of isofl avones using HPLC were investigated. All determinations were conducted after 7 days storage at 10°C. The sensorial acceptance was reduced in the isofl avones-supplemented soy product, but this effect was not signifi cant compared to the sample without isofl avones addition. Chemical composition did not differ (p<0.05) among the samples. Cell viable counts were reduced and total fermentation time was longer in the isofl avonessupplemented soy product, suggesting that the isofl avone addition could inhibit the starter cultures. However, all the products may be considered probiotic since they exhibited lactic acid bacterial populations varying from 2.3 x 109 up to 1.22 x 1010 CFU/mL. Fermentation of soymilk did not change the isofl avones profi le. In conclusion, it was possible to obtain a fermented soy product containing a high isofl avones concentration, adequate sensory and chemical characteristics and lactic acid bacterial viability suffi ciently high to characterize the product as a probiotic. The mixed starter culture was not able to convert the glycoside isofl avones into aglycone or produce equol during the fermented soy product processing.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The ingestion of probiotic lactic acid bacteria has been evaluated and noted that it has an effect on the balance of desirable microbiota in the gastrointestinal tract. Lactobacillus gasseri demonstrates good survival in the gastrointestinal tract, and it has been associated with a variety of probiotic activities and roles, including the reduction of fecal mutagenic enzymes, the production of bacteriocins and the stimulation of macrophages immunomodulation. The aim of the study was to evaluate the effects of a pool of L. gasseri strains isolated from the feces of breastfed infants added in the human milk of healthy women. The milk was both pasteurized and unpasteurized, to verify the cell cytotoxicity of macrophages and to quantify the production of immunologic mediators such as IL-4, IL-6, IFN-g, TNF-a, NO and oxygen intermediary compounds (H2O2). The administration of raw human milk and pasteurized human milk to infants is a regular, encouraged practice in units of intensive therapy (UITs) and our present investigation verified the beneficial effect of addition of a pool of L. gasseri to pasteurized human milk (PHML). Our results show that probiotic supplementation helped to maintain cell viability, reduced IL-6 and IFN-γ production and stimulated TNF-α, NO, H2O2, IL-4 production. Nevertheless, the results indicate that the addition of lactobacillus to human milk was not a determinant in the production of TNF-α. L. gasseri added to breast milk did not present a cytotoxic risk, and the addition of L. gasseri to pasteurized milk of human milk bank would benefit newborns that depend on milk banks for the colonization of more desirable microbiota.
Resumo:
The objective of this study was to investigate the effect of fermentation with Lactobacillus acidophilus CRL 1014 on the physicochemical, microbiological and sensory characteristics of a hamburger product like processed with chicken meat and okara flour, with reduction of curing salts. A mixture of ingredients containing 90% chicken meat and 10% okara flour was subjected to the following treatments: F1: fermented with Lactobacillus acidophilus; F2:75 mg nitrite/kg and fermented with Lactobacillus acidophilus; F3: 150 mg nitrite/kg and unfermented. The quality of the “hamburgers” was assessed by physical and chemical analysis (pH, cooking yield and shrinkage), chemical composition, microbiological tests (Salmonella spp., count of sulphite-reducing clostridia, staphylococos coagulase-positive, total coliforms and Escherichia coli) and sensory analysis (sensory acceptance and purchase intent). During the first six days of fermentation, there was a decrease in pH from approximately 6.33 to 5.10. All the samples showed the same chemical composition (p < 0.05). The fermentation process was observed to inhibit the multiplication of microorganisms of several groups: coagulasepositive staphylococci, sulphite-reducing clostridia, Salmonella spp. and E. coli. The different “hamburgers” formulations showed high scores for all the sensory attributes evaluated, without differing from each other (p < 0.05). The results showed that the use of L. acidophilus CRL 1014 enabled the production of a safe product, with good physicochemical and sensory characteristics, in the absence of curing salts.
Resumo:
Necrotic Enteritis (NE) caused by Clostridium perfringens (CP) in poultry is probably the most important bacterial disease in terms of economic implications. The disease is multi-factorial and is invariably associated with predisposing factors. The present study investigated the effect of a commercially available Lactobacillus-based probiotic (FM-B11) for the control of necrotic enteritis in broiler chickens. In experiment 1, one-day-of-hatch broiler chicks were randomly allocated to the following treatment groups: 1) Non-challenged (NC); 2) Challenged (C); 3) Challenged + probiotic (C+ FM-B11). Prior to placement, chicks in groups 2 and 3 received 0.25 mL of Salmonella typhimurium (ST) containing 105 cfu of viable cells by oral gavage. At 14, 15 and 16 days of age, all chicks in group 3 were treated with FM-B11 in the drinking water at a concentration of 106 cfu/ml. At 21d of age, all chicks in groups 2 and 3, were individually challenged with 5 × 104 sporulated oocysts of E. maxima by oral gavage. At 26d of age, all chicks in groups 2 and 3, were individually challenged with 108 cfu CP; body weight (BW) was recorded prior to challenge. The experiment was terminated at 29 days of age and the following parameters were evaluated: NE-associated mortality, CP lesion scores, CP concentrations in ileum, BW, and body weight gain (BWG). Chicks treated with FM-B11 had significantly (P < 0.05) higher body weight gain after challenge when compared to control challenge chickens. Total mortality was higher in the C group (48.8%) when compared to the C + FM-B11 (12.7%). Even though there was no significant (P > 0.05) difference in lesion score between C and C + FM-B11, group C + FM-B11 had significantly (P < 0.05) lower total number of cfu of CP recovered from the ileal mucosa and content samples when compared to group C. Experiment 2 was a unique and remarkable case report of a field outbreak of NE in a commercial broiler farm in Argentina. A reduction and control of the mortality associated with NE following 3 days of administration of FM-B11 was observed as compared with the control non treated house. These results imply that the commercially available Lactobacillus-based probiotic FM-B11 was able to reduce the severities of NE, as a secondary bacterial infection, in an experimental NE challenge model; as well as, in a commercial field outbreak of NE.
Resumo:
It has been reported that the phage therapy is effective in controlling the number of colony-forming unit (CFU) of Salmonella spp. in chicken gut. This paper describes the protective effect of phage and Lactobacilli administration on Salmonella infection in 1-day-old chicks. We administered the bacteriophage P22 in a single dose and a probiotic mixture of four species of bacteriocin-producing Lactobacillus once a day for one week. Samples were analyzed every 48 hours, and intestinal eradication of S. Typhimurium was confirmed after treatments. We observed an increase in the size of duodenal villi and cecal crypts, as well as an increase in body weight in groups that received daily doses of Lactobacilli. This study confirms the efficiency of bacteriophage therapy in controlling salmonellosis in chicks and the beneficial effect of Lactobacilli mixtures in the weight gain of the birds.
Resumo:
Long-term care settings have the majority of their patients on multiple antibiotics, and outbreaks of antibiotic-associated diarrhea and Clostridium difficile are common. Probiotics have been used with these patients to reduce these side effects. Probiotics can re-establish the composition of intestinal microflora, enhance immune response, and clear pathogens from the host which may reduce the symptoms of antibiotic-associated diarrhea. Therefore, the goal of this study was to conduct a retrospective study of the effectiveness of using probiotic in elderly patients in a long-term care facility in a Midwestern city who suffered from antibiotic-associated diarrhea. The probiotic, CulturelleTM had been administered once a day to eight males and twelve female patients who were taking antibiotics and stool consistency and number were recorded. Out of the original group, seven of the patients receiving the probiotic appeared to have positive effects while two patients had negative effects on stools. Thirteen patients showed no change in stool consistency and number. It was difficult to determine the effects of the probiotic due to the use by the facility of a bowel movement protocol for preventing constipation and impaction, and the lack of dietary records. Published studies in patients in long-term facilities vary greatly in terms of trial design, type and dose of probiotic and duration of treatment, which may explain why probiotics work for some patients and not for others. Probiotic use is becoming more accepted with antibiotic-associated diarrhea but due to the lack of definitive evidence about efficacy and the safety of probiotic use, more studies need to be conducted. Advisors: Kaye Stanek Krogstrand and Julie Albrecht
Resumo:
To obtain a probiotic caprine Coalho cheese naturally enriched in conjugated linoleic acid (CLA), goats' diet was supplemented with soybean oil to produce CLA-enhanced milk, and Lactobacillus acidophilus La5 was incorporated into cheeses. CLA concentration and probiotic viability were evaluated during 60 days. Four pilot-scale cheese-making trials were manufactured, in triplicates. Cheeses T1 and T2 were produced with control milk, and T3 and T4 with CLA-enhanced milk. L. acidophilus was added to cheeses T2 and T4 during processing. The CLA content (isomer C18:2 cis-9, trans-11) in T3 and T4 was 246% to 291% higher than in T1 and T2 (P < 0.01). Populations of L. acidophilus were around 7.5 log cfu g(-1) in T2 and T4 during the study, and the highest CLA content in T4 did not influence the probiotic viability (P > 0.01). The CLA-enriched probiotic caprine Coalho cheese obtained is proposed as a vehicle for beneficial microorganisms and fatty acids. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Development of dairy organic probiotic fermented products is of great interest as they associate ecological practices and benefits of probiotic bacteria. As organic management practices of cow milk production allow modification of the fatty acid composition of milk (as compared to conventional milk), we studied the influence of the type of milk on some characteristics of fermented milks, such as acidification kinetics. bacterial counts and fatty acid content. Conventional and organic probiotic fermented milks were produced using Bifidobacterium animalis subsp. lactis HN019 in co-culture with Streptococcus thermophilus TA040 and Lactobacillus delbrueckii subsp. bulgaricus LB340. The use of organic milk led to a higher acidification rate and cultivability of Lactobacillus bulgaricus. Fatty acids profile of organic fermented milks showed higher amounts of trans-octadecenoic acid (C18:1, 1.6 times) and polyunsaturated fatty acids, including cis-9 trans-11. C18:2 conjugated linoleic (CLA-1.4 times), and alpha-linolenic acids (ALA-1.6 times), as compared to conventional fermented milks. These higher levels were the result of both initial percentage in the milk and increase during acidification, with no further modification during storage. Finally, use of bifidobacteria slightly increased CLA relative content in the conventional fermented milks, after 7 days of storage at 4 degrees C, whereas no difference was seen in organic fermented milks. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
This study evaluated the effect of the supplementation of total dietary fiber from apple, banana or passion fruit processing by-products on the post-acidification, total titratable acidity, bacteria counts and fatty acid profiles in skim milk yoghurts co-fermented by four different probiotics strains: Lactobacillus acidophilus L10 and Bifidobacterium animalis subsp. lactis BL04, HN019 and B94. Apple and banana fibers increased the probiotic viability during shelf-life. All the fibers were able to increase the short chain and polyunsaturated fatty acid contents of yoghurts compared to their respective controls. A synergistic effect between the type of fiber and the probiotic strain on the conjugated linoleic acid content was observed, and the amount of alpha-linolenic acid was increased by banana fiber. The results of this study demonstrate, for the first time, that fruit fibers can improve the fatty acid profile of probiotic yoghurts and point out the suitability of using fibers from fruit processing the by-products to develop new high value-added fermented dairy products. (C) 2012 Elsevier By. All rights reserved.
Resumo:
Lactobacillus sakei 1 is a food isolate that produces a heat-stable antimicrobial peptide (sakacin 1, a class ha bacteriocin) inhibitory to the opportunistic pathogen Listeria monocytogenes. Bacterial isolates with antimicrobial activity may be useful for food biopreservation and also for developing probiotics. To evaluate the probiotic potential of L. sakei I, it was tested for (i) in vitro gastric resistance (with synthetic gastric juice adjusted to pH 2.0, 2.5, or 3.0); (ii) survival and bacteriocin production in the presence of bile salts and commercial prebiotics (inulin and oligofructose); (iii) adhesion to Caco-2 cells; and (iv) effect on the adhesion of L. monocytogenes to Caco-2 cells and invasion of these cells by the organism. The results showed that L. sakei I survival in gastric environment varied according to pH, with the maximum survival achieved at pH 3.0, despite a 4-log reduction of the population after 3 h. Regarding the bile salt tolerance and influence of prebiotics, it was observed that L. sakei 1 survival rates were similar (P > 0.05) for all de Man Rogosa Shame (MRS) broth formulations when tests were done after 4 h of incubation. However, after incubation for 24 h, the survival of L. sakei 1 in MRS broth was reduced by 1.8 log (P < 0.001), when glucose was replaced by either inulin or oligofructose (without Oxgall). L. sakei 1 was unable to deconjugate bile salts, and there was a significant decrease (1.4 log) of the L. sakei 1 population in regular MRS broth plus Oxgall (P < 0.05). In spite of this, tolerance levels of L. sakei 1 to bile salts were similar in regular MRS broth and in MRS broth with oligofructose. Lower bacteriocin production was observed in MRS broth when inulin (3,200 AU/ml) or oligofructose (2,400 AU/ml) was used instead of glucose (6,400 AU/ml). L. sakei I adhered to Caco-2 cells, and its cell-free pH-neutralized supernatant containing sakacin I led to a significant reduction of in vitro listerial invasion of human intestinal Caco-2 cells.
Resumo:
The aim of this study was to assess selective plating methodologies for the enumeration and identification of Streptococcus thermophilus, Lactobacillus delbrueckii ssp. bulgaricus, Lactobacillus acidophilus, Lactobacillus rhamnosus and Bifidobacterium animalis ssp. lactis in fermented milks. Seven agar media (MRS with added sorbitol, clindamycin or vancomycin, acidified MRS, RCA with added aniline blue and dicloxacilin, M17 and ST) were evaluated. The results showed that RCA dicloxacilin agar was suitable for the selective enumeration of B. animalis ssp. lactis in fermented milk. Either MRS (acidified) or M17 agar could be used for enumeration of L. delbrueckii ssp. bulgaricus and S. thermophilus, respectively. MRS media containing antibiotics were effective for the enumeration of the probiotic organisms (L. rhamnosus and L. acidophilus) inoculated in fermented milks.