945 resultados para Probability Distribution Function
Resumo:
This contribution proposes a novel probability density function (PDF) estimation based over-sampling (PDFOS) approach for two-class imbalanced classification problems. The classical Parzen-window kernel function is adopted to estimate the PDF of the positive class. Then according to the estimated PDF, synthetic instances are generated as the additional training data. The essential concept is to re-balance the class distribution of the original imbalanced data set under the principle that synthetic data sample follows the same statistical properties. Based on the over-sampled training data, the radial basis function (RBF) classifier is constructed by applying the orthogonal forward selection procedure, in which the classifier’s structure and the parameters of RBF kernels are determined using a particle swarm optimisation algorithm based on the criterion of minimising the leave-one-out misclassification rate. The effectiveness of the proposed PDFOS approach is demonstrated by the empirical study on several imbalanced data sets.
Resumo:
The activation of aerosols to form cloud droplets is dependent upon vertical velocities whose local variability is not typically resolved at the GCM grid scale. Consequently, it is necessary to represent the subgrid-scale variability of vertical velocity in the calculation of cloud droplet number concentration. This study uses the UK Chemistry and Aerosols community model (UKCA) within the Hadley Centre Global Environmental Model (HadGEM3), coupled for the first time to an explicit aerosol activation parameterisation, and hence known as UKCA-Activate. We explore the range of uncertainty in estimates of the indirect aerosol effects attributable to the choice of parameterisation of the subgrid-scale variability of vertical velocity in HadGEM-UKCA. Results of simulations demonstrate that the use of a characteristic vertical velocity cannot replicate results derived with a distribution of vertical velocities, and is to be discouraged in GCMs. This study focuses on the effect of the variance (σw2) of a Gaussian pdf (probability density function) of vertical velocity. Fixed values of σw (spanning the range measured in situ by nine flight campaigns found in the literature) and a configuration in which σw depends on turbulent kinetic energy are tested. Results from the mid-range fixed σw and TKE-based configurations both compare well with observed vertical velocity distributions and cloud droplet number concentrations. The radiative flux perturbation due to the total effects of anthropogenic aerosol is estimated at −1.9 W m−2 with σw = 0.1 m s−1, −2.1 W m−2 with σw derived from TKE, −2.25 W m−2 with σw = 0.4 m s−1, and −2.3 W m−2 with σw = 0.7 m s−1. The breadth of this range is 0.4 W m−2, which is comparable to a substantial fraction of the total diversity of current aerosol forcing estimates. Reducing the uncertainty in the parameterisation of σw would therefore be an important step towards reducing the uncertainty in estimates of the indirect aerosol effects. Detailed examination of regional radiative flux perturbations reveals that aerosol microphysics can be responsible for some climate-relevant radiative effects, highlighting the importance of including microphysical aerosol processes in GCMs.
Resumo:
In this paper, we formulate a flexible density function from the selection mechanism viewpoint (see, for example, Bayarri and DeGroot (1992) and Arellano-Valle et al. (2006)) which possesses nice biological and physical interpretations. The new density function contains as special cases many models that have been proposed recently in the literature. In constructing this model, we assume that the number of competing causes of the event of interest has a general discrete distribution characterized by its probability generating function. This function has an important role in the selection procedure as well as in computing the conditional personal cure rate. Finally, we illustrate how various models can be deduced as special cases of the proposed model. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Kumaraswamy [Generalized probability density-function for double-bounded random-processes, J. Hydrol. 462 (1980), pp. 79-88] introduced a distribution for double-bounded random processes with hydrological applications. For the first time, based on this distribution, we describe a new family of generalized distributions (denoted with the prefix `Kw`) to extend the normal, Weibull, gamma, Gumbel, inverse Gaussian distributions, among several well-known distributions. Some special distributions in the new family such as the Kw-normal, Kw-Weibull, Kw-gamma, Kw-Gumbel and Kw-inverse Gaussian distribution are discussed. We express the ordinary moments of any Kw generalized distribution as linear functions of probability weighted moments (PWMs) of the parent distribution. We also obtain the ordinary moments of order statistics as functions of PWMs of the baseline distribution. We use the method of maximum likelihood to fit the distributions in the new class and illustrate the potentiality of the new model with an application to real data.
Resumo:
In this paper we study the accumulated claim in some fixed time period, skipping the classical assumption of mutual independence between the variables involved. Two basic models are considered: Model I assumes that any pair of claims are equally correlated which means that the corresponding square-integrable sequence is exchangeable one. Model 2 states that the correlations between the adjacent claims are the same. Recurrence and explicit expressions for the joint probability generating function are derived and the impact of the dependence parameter (correlation coefficient) in both models is examined. The Markov binomial distribution is obtained as a particular case under assumptions of Model 2. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The main objective of this paper is to study a logarithm extension of the bimodal skew normal model introduced by Elal-Olivero et al. [1]. The model can then be seen as an alternative to the log-normal model typically used for fitting positive data. We study some basic properties such as the distribution function and moments, and discuss maximum likelihood for parameter estimation. We report results of an application to a real data set related to nickel concentration in soil samples. Model fitting comparison with several alternative models indicates that the model proposed presents the best fit and so it can be quite useful in real applications for chemical data on substance concentration. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
We present a Bayesian approach for modeling heterogeneous data and estimate multimodal densities using mixtures of Skew Student-t-Normal distributions [Gomez, H.W., Venegas, O., Bolfarine, H., 2007. Skew-symmetric distributions generated by the distribution function of the normal distribution. Environmetrics 18, 395-407]. A stochastic representation that is useful for implementing a MCMC-type algorithm and results about existence of posterior moments are obtained. Marginal likelihood approximations are obtained, in order to compare mixture models with different number of component densities. Data sets concerning the Gross Domestic Product per capita (Human Development Report) and body mass index (National Health and Nutrition Examination Survey), previously studied in the related literature, are analyzed. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Bounds on the distribution function of the sum of two random variables with known marginal distributions obtained by Makarov (1981) can be used to bound the cumulative distribution function (c.d.f.) of individual treatment effects. Identification of the distribution of individual treatment effects is important for policy purposes if we are interested in functionals of that distribution, such as the proportion of individuals who gain from the treatment and the expected gain from the treatment for these individuals. Makarov bounds on the c.d.f. of the individual treatment effect distribution are pointwise sharp, i.e. they cannot be improved in any single point of the distribution. We show that the Makarov bounds are not uniformly sharp. Specifically, we show that the Makarov bounds on the region that contains the c.d.f. of the treatment effect distribution in two (or more) points can be improved, and we derive the smallest set for the c.d.f. of the treatment effect distribution in two (or more) points. An implication is that the Makarov bounds on a functional of the c.d.f. of the individual treatment effect distribution are not best possible.
Resumo:
Extreme rainfall events have triggered a significant number of flash floods in Madeira Island along its past and recent history. Madeira is a volcanic island where the spatial rainfall distribution is strongly affected by its rugged topography. In this thesis, annual maximum of daily rainfall data from 25 rain gauge stations located in Madeira Island were modelled by the generalised extreme value distribution. Also, the hypothesis of a Gumbel distribution was tested by two methods and the existence of a linear trend in both distributions parameters was analysed. Estimates for the 50– and 100–year return levels were also obtained. Still in an univariate context, the assumption that a distribution function belongs to the domain of attraction of an extreme value distribution for monthly maximum rainfall data was tested for the rainy season. The available data was then analysed in order to find the most suitable domain of attraction for the sampled distribution. In a different approach, a search for thresholds was also performed for daily rainfall values through a graphical analysis. In a multivariate context, a study was made on the dependence between extreme rainfall values from the considered stations based on Kendall’s τ measure. This study suggests the influence of factors such as altitude, slope orientation, distance between stations and their proximity of the sea on the spatial distribution of extreme rainfall. Groups of three pairwise associated stations were also obtained and an adjustment was made to a family of extreme value copulas involving the Marshall–Olkin family, whose parameters can be written as a function of Kendall’s τ association measures of the obtained pairs.
Resumo:
A linear chain do not present phase transition at any finite temperature in a one dimensional system considering only first neighbors interaction. An example is the Ising ferromagnet in which his critical temperature lies at zero degree. Analogously, in percolation like disordered geometrical systems, the critical point is given by the critical probability equals to one. However, this situation can be drastically changed if we consider long-range bonds, replacing the probability distribution by a function like . In this kind of distribution the limit α → ∞ corresponds to the usual first neighbor bond case. In the other hand α = 0 corresponds to the well know "molecular field" situation. In this thesis we studied the behavior of Pc as a function of a to the bond percolation specially in d = 1. Our goal was to check a conjecture proposed by Tsallis in the context of his Generalized Statistics (a generalization to the Boltzmann-Gibbs statistics). By this conjecture, the scaling laws that depend with the size of the system N, vary in fact with the quantitie
Resumo:
This paper presents a method for calculating the power flow in distribution networks considering uncertainties in the distribution system. Active and reactive power are used as uncertain variables and probabilistically modeled through probability distribution functions. Uncertainty about the connection of the users with the different feeders is also considered. A Monte Carlo simulation is used to generate the possible load scenarios of the users. The results of the power flow considering uncertainty are the mean values and standard deviations of the variables of interest (voltages in all nodes, active and reactive power flows, etc.), giving the user valuable information about how the network will behave under uncertainty rather than the traditional fixed values at one point in time. The method is tested using real data from a primary feeder system, and results are presented considering uncertainty in demand and also in the connection. To demonstrate the usefulness of the approach, the results are then used in a probabilistic risk analysis to identify potential problems of undervoltage in distribution systems. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Within a QCD-based eikonal model with a dynamical infrared gluon mass scale we discuss how the small x behavior of the gluon distribution function at moderate Q(2) is directly related to the rise of total hadronic cross-sections. In this model the rise of total cross-sections is driven by gluon-gluon semihard scattering processes, where the behavior of the small x gluon distribtuion function exhibits the power law xg(x, Q(2)) = h(Q(2))x(-epsilon). Assuming that the Q(2) scale is proportional to the dynamical gluon mass one, we show that the values of h(Q(2)) obtained in this model are compatible with an earlier result based on a specific nonperturbative Pomeron model. We discuss the implications of this picture for the behavior of input valence-like gluon distributions at low resolution scales.
Resumo:
A mapping which relates the Wigner phase-space distribution function associated with a given stationary quantum-mechanical wavefunction to a specific solution of the time-independent Liouville transport equation is obtained. Two examples are studied.
Analytical and Monte Carlo approaches to evaluate probability distributions of interruption duration
Resumo:
Regulatory authorities in many countries, in order to maintain an acceptable balance between appropriate customer service qualities and costs, are introducing a performance-based regulation. These regulations impose penalties-and, in some cases, rewards-that introduce a component of financial risk to an electric power utility due to the uncertainty associated with preserving a specific level of system reliability. In Brazil, for instance, one of the reliability indices receiving special attention by the utilities is the maximum continuous interruption duration (MCID) per customer.This parameter is responsible for the majority of penalties in many electric distribution utilities. This paper describes analytical and Monte Carlo simulation approaches to evaluate probability distributions of interruption duration indices. More emphasis will be given to the development of an analytical method to assess the probability distribution associated with the parameter MCID and the correspond ng penalties. Case studies on a simple distribution network and on a real Brazilian distribution system are presented and discussed.
Resumo:
A mapping that relates the Wigner phase-space distribution function of a given stationary quantum mechani-cal wave function, a solution of the Schrödinger equation, to a specific solution of the Liouville equation, both subject to the same potential, is studied. By making this mapping, bound states are described by semiclassical distribution functions still depending on Planck's constant, whereas for elastic scattering of a particle by a potential they do not depend on it, the classical limit being reached in this case. Following this method, the mapped distributions of a particle bound in the Pöschl-Teller potential and also in a modified oscillator potential are obtained.