940 resultados para Polymer films


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Blends of polycaprolactone (PCL), a synthetic polymer and gelatin, natural polymer offer a optimal combination of strength, water wettability and cytocompatibility for use as a resorbable biomaterial. The enzymatic degradation of PCL, gelatin and PCL-gelatin blended films was studied in the presence of lipase (Novozym 435, immobilized) and lysozyme. Novozym 435 degraded the PCL films whereas lysozyme degraded the gelatin. Though Novozym 435 and lysozyme individually could degrade PCL-gelatin blended films, the combination of these enzymes showed the highest degradation of these blended films. Moreover, the enzymatic degradation was much faster when fresh enzymes were added at regular intervals. The changes in physico-chemical properties of polymer films due to degradation were studied by scanning electron microscopy, Fourier transform infrared spectroscopy and differential scanning calorimetry. These results have important implications for designing resorbable biomedical implants.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Blends of polycaprolactone (PCL), a synthetic polymer and gelatin, natural polymer offer a optimal combination of strength, water wettability and cytocompatibility for use as a resorbable biomaterial. The enzymatic degradation of PCL, gelatin and PCL-gelatin blended films was studied in the presence of lipase (Novozym 435, immobilized) and lysozyme. Novozym 435 degraded the PCL films whereas lysozyme degraded the gelatin. Though Novozym 435 and lysozyme individually could degrade PCL-gelatin blended films, the combination of these enzymes showed the highest degradation of these blended films. Moreover, the enzymatic degradation was much faster when fresh enzymes were added at regular intervals. The changes in physico-chemical properties of polymer films due to degradation were studied by scanning electron microscopy, Fourier transform infrared spectroscopy and differential scanning calorimetry. These results have important implications for designing resorbable biomedical implants.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study explores a number of low-viscosity glass-forming polymers for their suitability as high-speed materials in electrohydrodynamic (EHD) lithography. The use of low-viscosity polymer films significantly reduces the patterning time (to below 10 s) compared to earlier approaches, without compromising the high fidelity of the replicated structures. The rapid pace of this process requires a method to monitor the completion of EHD pattern formation. To this end, the leakage current across the device is monitored and the sigmoidal shape of the current curve is correlated with the various stages of EHD pattern formation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundamental studies of magnetic alignment of highly anisotropic mesostructures can enable the clean-room-free fabrication of flexible, array-based solar and electronic devices, in which preferential orientation of nano- or microwire-type objects is desired. In this study, ensembles of 100 micron long Si microwires with ferromagnetic Ni and Co coatings are oriented vertically in the presence of magnetic fields. The degree of vertical alignment and threshold field strength depend on geometric factors, such as microwire length and ferromagnetic coating thickness, as well as interfacial interactions, which are modulated by varying solvent and substrate surface chemistry. Microwire ensembles with vertical alignment over 97% within 10 degrees of normal, as measured by X-ray diffraction, are achieved over square cm scale areas and set into flexible polymer films. A force balance model has been developed as a predictive tool for magnetic alignment, incorporating magnetic torque and empirically derived surface adhesion parameters. As supported by these calculations, microwires are shown to detach from the surface and align vertically in the presence of magnetic fields on the order of 100 gauss. Microwires aligned in this manner are set into a polydimethylsiloxane film where they retain their vertical alignment after the field has been removed and can subsequently be used as a flexible solar absorber layer. Finally, these microwires arrays can be protected for use in electrochemical cells by the conformal deposition of a graphene layer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The application of high performance textiles has grown significantly in the last 10 to 15 years. Various research groups throughout the United Kingdom, such as the Department of Trade and Industry, have identified technical textiles as a field for future development. There is little design guidance for joining of flexible materials or general property models that can be applied to theses materials. This lack is due to the large diversity of properties, structures and resulting behaviours of the materials that are classified as "Flexible Materials". This dissertation explores the issues that are involved in characterising the materials at the fibre, bulk and textile levels. Different units of measurement are used for each stage of the manufacturing process of flexible materials and this disparity creates problems when trying to make general comparisons (e.g. comparing textiles to polymer films). Thus, a possible solution to this is to create selection charts that allow designers to compare the strength of materials for a given mass per unit area. A design tool was created using the Cambridge Engineering Selector (CES) software to enable the selection of joining processes for material. The tool is effective in selecting a reduced number of viable joining processes. Through case studies it was shown that designers are required to examine the selected processes (identified by the software) in greater detail - in particular the economics and geometry of the joint - in order to identify the optimum joining process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Natural cilia are hairlike microtubule-based structures that are able to move fluid on the micrometer scale using asymmetric motion. In this article, we follow a biomimetic approach to design artificial cilia lining the inner surfaces of microfluidic channels with the goal of propelling fluid. The artificial cilia consist of polymer films filled with superparamagnetic nanoparticles, which can mimic the motion of natural cilia when subjected to a rotating magnetic field. To obtain the magnetic field and associated magnetization local to the cilia, we solve the Maxwell equations, from which the magnetic body moments and forces can be deduced. To obtain the ciliary motion, we solve the dynamic equations of motion, which are then fully coupled to the Navier-Stokes equations that describe the fluid flow around the cilia, thus taking full account of fluid inertial forces. The dimensionless parameters that govern the deformation behavior of the cilia and the associated fluid flow are arrived at using the principle of virtual work. The physical response of the cilia and the fluid flow for different combinations of elastic, fluid viscous, and inertia forces are identified.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we quantitatively analyse the performance of magnetically-driven artificial cilia for lab-on-a-chip applications. The artificial cilia are fabricated using thin polymer films with embedded magnetic nano-particles and their deformation is studied under different external magnetic fields and flows. A coupled magneto-mechanical solid-fluid model that accurately captures the interaction between the magnetic field, cilia and fluid is used to simulate the cilia motion. The elastic and magnetic properties of the cilia are obtained by fitting the results of the computational model to the experimental data. The performance of the artificial cilia with a non-uniform cross-section is characterised using the numerical model for two channel configurations that are of practical importance: an open-loop and a closed-loop channel. We predict that the flow and pressure head generated by the artificial cilia can be as high as 18 microlitres per minute and 3 mm of water, respectively. We also study the effect of metachronal waves on the flow generated and show that the fluid propelled increases drastically compared to synchronously beating cilia, and is unidirectional. This increase is significant even when the phase difference between adjacent cilia is small. The obtained results provide guidelines for the optimal design of magnetically-driven artificial cilia for microfluidic propulsion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

GaAs/AlGaAs lattice-matched nanorings are formed on GaAs (100) substrates by droplet epitaxy. The crucial step in the formation of nanorings is annealing Ga droplets under As flux for proper time. The observed morphologic evolution of Ga droplets during annealing does not support the hypothesis that As atoms preferentially react with Ga around the periphery of the droplets, but somehow relates to a dewetting process similar to that of unstable films. Photoluminescene (PL) test results confirm the quantum-confinement effect of these GaAs nanorings. Using similar methods, we have fabricated InGaAs/GaAs lattice-mismatched rings. (c) 2005 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

自20世纪60年代发展到现在,激光技术发展的速度十分惊人,应用的范围不断拓展,近年来随着有机/聚合物电致发光材料在有机发光二极管上的应用以及有机晶体管和有机太阳能电池的研制成功,科学家们开始了有机/聚合物材料放大自发发射和激光发射行为的研究。到目前为止,已经开发出了这种廉价、可以大面积成膜的、具有更广泛应用范围的有机/聚合物固体激光材料及光泵浦激光器。有机/聚合物激光器的出现不仅向传统激光理论提出了新的挑战,而且具有诸多潜在的应用价值。可以断言,在21世纪知识经济的大潮中,有机/聚合物激光器的研究必将推动传统学科的发展和新兴学科形成,也必将为人类带来巨大的经济效益。新的有机激光材料不断涌现、器件结构不断推陈出新、新的激发原理不断提出并得到修正已经成为有机/聚合物固体激光研究领域的三大特点。本论文进行了利用Förster能量传递对荧光染料DCJTB放大自发发射行为的优化、基于放大自发发射的红光染料DCJTB掺杂聚合物薄膜的白光发射、多孔结构对荧光染料放大自发发射行为的优化以及基于纳米结构的荧光染料DCJTB掺杂聚合物薄膜的激光行为等方面的研究工作,具体研究内容如下: 1、利用Förster能量传递理论,系统地研究了两种或三种染料共掺杂聚合物薄膜的放大自发发射(ASE)行为。研究表明,两种染料共掺杂显著改善了掺杂聚合物薄膜的ASE阈值、增益和损耗特性,而三种染料共掺杂,由于更多的Förster能量传递,使掺杂聚合物薄膜的ASE阈值、增益和损耗性能得到了进一步的改善。将Alq3和C545T两种绿光染料同时掺杂到DCJTB:PS中,通过利用Alq3和C545T同时的能量传递效应,已经使Alq3:C545T:DCJTB:PS薄膜的阈值、增益和损耗分别达到了0.007 mJ/pulse、52 cm-1和7 cm-1。 2、将红色荧光染料DCJTB掺杂到蓝色聚合物PFO中,通过控制DCJTB在PFO中的浓度,我们获得了具有放大自发发射的白光发射,当DCJTB在PFO的掺杂浓度为0.3%时显示了最好的白光ASE特性, 白光中DCJTB和PFO发射的阈值、增益和损耗分别达到了0.072 mJ pulse-1,0.035 mJ pulse-1;36.3 cm-1,22.35 cm-1和7.39 cm-1,15.88 cm-1。我们的结果表明,DCJTB掺杂聚合物PFO体系是实现ASE白光发射的有效方法,拓展了ASE的应用范围。 3、开发出了二维多孔SBA-15和三维TiO2反蛋白石光子晶体两种实现有机ASE有效发射的两种结构,通过利用有序结构的SBA-15的量子限域效应优化了蓝光染料C151的ASE阈值、增益和损耗特性,而通过利用三维TiO2反蛋白石光子晶体的量子限域效应,也使包埋其中的绿光染料C545T的ASE特性得到了明显改善。研究表明,无论是二维SBA-15多孔结构还是三维TiO2反蛋白石光子晶体结构,通过其量子限域效应都能很好地优化包埋其中的荧光染料的ASE特性,为进一步优化有机半导体的ASE特性提供了新的思路。 4、将聚苯乙烯纳米球分散到DCJTB:PS薄膜中和把DCJTB:PS薄膜旋涂在ZnO纳米柱阵列上两种方法,我们已经成功地研制出了多模随机有机激光发射器件。详细研究表明,多模随机有机激光发射特性显著地与聚苯乙烯纳米球的尺寸和浓度以及ZnO纳米柱的疏密程度密切相关,优化后的聚苯乙烯纳米球掺杂DCJTB:PS薄膜的阈值已经达到了0.06 mJ pulse-1cm-2,而ZnO纳米柱包埋DCJTB:PS薄膜的阈值达到了0.375 mJ pulse-1cm-2。我们的结果表明,聚苯乙烯纳米球和ZnO纳米柱都是实现随机有机激光的非常好的散射介质材料。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

发展不依赖于传统刻蚀技术的、图案尺寸等可以动态调控的微图案化方法是当前国际上的研究热点。高分子由于可以通过可控聚合调控其预定结构和尺寸,并且具有易于加工和可以嵌入多种化学功能团等特点,是制备不依赖于传统刻蚀技术的价廉、高产的微图案化的理想材料。因而设计具有特定结构的高分子,利用高分子的丰富的相态结构和其在外场等作用下的性质,发展高分子图案化方法、技术和原理具有重要意义。本论文利用高分子的尺度和结构特征以及对外场的响应特性,研究其自组装形成微、纳米图案的影响因素和机理,掌握了调控图案形态、尺寸、表面性质的规律,实现了稳定、有序的智能图案的动态设计。主要内容如下:(1)利用冷凝的水蒸汽液滴为模板,在PS、PMMA等均聚物薄膜上制备了微米尺寸的规则孔洞结构。研究了溶剂性质、聚合物溶液粘度、环境湿度等对规则孔洞形成的影响,观察了孔洞形成的中间过程,提出了孔洞形成的机理。(2)研究了高分子均聚物和以聚合物为基体的发光小分子薄膜在外场(电场、温度场)作用下的长程有序规则排列图案的形成条件和机理,以及外场作用对高分子有序结构的影响因素。静电力和温度梯度使薄膜变得不稳定,表面产生具有一定波长和周期的起伏波,这种波动逐渐增强使薄膜破裂最终形成规则结构。(3)通过研究发现薄膜厚度、溶剂对不同链段的选择性以及溶剂蒸汽处理时间对嵌段共聚物薄膜表面形态的演变有重要影响。对于对称双嵌段共聚物PS-b-PMMA薄膜,在PMMA的选择性溶剂蒸汽中,通过改变溶剂蒸汽对PS-b-PMMA薄膜的溶胀程度和处理时间,得到规则孔洞到条纹转变的一系列纳米结构和规则小球到条纹转变的一系列纳米结构。溶剂蒸汽改变了薄膜边界条件,使富集在基底的PMMA向薄膜表面迁移,使其表面形貌和组成发生变化。通过将此体系与均聚物和短链嵌段共聚物共混,改变链段间的界面张力,可以调控纳米结构的尺寸。更进一步,得到的纳米结构图案化的薄膜具有环境敏感性。当将其置于对PS嵌段具有选择性的溶剂蒸汽中时,变换薄膜的边界条件,表面形貌和性质发生了反转。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

本文简要叙述了快重离子在固体材料,特别是聚合物材料中引起的强电子激发效应研究的基本理论、发展历史和研究现状。描述了在兰州重离子加速器上完成的25 MeV/u 86Kr离子辐照叠层聚对苯二甲酸乙二醇酯膜(PET)和聚碳酸酯(PC)膜的实验及结果分析。应用傅立叶红外变换光谱(FT-IR)及X-射线衍射分析(XRD)方法研究了在不同电子能损及不同注量辐照条件下,高能Kr离子在聚合物PET和PC潜径迹中引起的的损伤效应。结果表明:高能Kr离子在聚合物PET、PC膜引起的损伤主要是由于辐照引起的断键及键的重组产生的官能团的降解及非晶化过程,损伤截面存在电子能损阈值,且与官能团的结构有关。 对PET的傅立叶红外变换光谱分析结果给出,电子能损为7.25 keV/nm时,对应官能团吸收峰794 cm-1, 849 cm-1, 1021 cm-1, 1341 cm-1, 1410 cm-1, 1505 cm-1,的损伤截面半径分别为:3.63 nm, 4.70 nm, 4.58 nm, 3.54 nm, 5.17 nm, 5.32 nm。X-射线衍射分析结果表明,PET的非晶化转变截面随离子注量和电子能损的增大而增加,(100)衍射峰的相对强度I/I0随离子注量的增加而指数衰减,对应电子能损为6.62, 6.93, 7.25 keV/nm,其相应的非晶化半径分别为4.86, 5.64, 6.77 nm。 对PC的傅立叶红外变换光谱分析表明,当电子能损比较小,大多数官能团的红外吸收无明显变化,直到当辐照注量为2×1012 ions/cm2 且电子能损比较大时,其绝对吸收强度才发生明显的改变。电子能损为6.37 keV/nm 时,对应官能团吸收峰为519 cm-1, 605 cm-1, 724 cm-1, 1014 cm-1,其损伤截面分别为:13.12, 45.40, 50.21, 56.28 nm2

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A layer-by-layer film composed of DNA and inorganic zirconium ion (Zr4+) was fabricated on the surface of gold thin film, and an electric field triggered disintegration of the multilayer film was studied by using electrochemical surface plasmon resonance (EC-SPR). EC-SPR results demonstrated that the film was disassembled upon the application of an electric field and the disassembly rate varied with the applied potential, leading to the controlled release of DNA. The electrodissolution could be switched off by removing the electric potential and reactivated by reapplying the potential.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel conjugated oligomer, oligo(9,9'-dioctylfluorene-alt-bithiophene) (OF8T2), was found to exhibit a unique phase transition between crystalline and liquid-crystalline states, and a liquid-crystalline glass was easily generated, offering better TFT device performance. In thin films, upon annealing the OF8T2 molecules oriented preferentially with their planes of conjugation being normal to the substrate, and both film thickness and annealing temperature were critical to the film morphology and the molecular orientation. When the OF8T2 film was deposited on a rubbed polyimide surface and annealed, the molecules aligned their long axes along the rubbing direction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The dewetting behavior of thin (about 30 nm) polystyrene (PS) films filled with different amount of (C6H5C2H4NH3)(2)PbI4 (PhE-PbI4) on the silicon substrate with a native oxide layer was investigated. For different additive concentrations, PhE-PbI4 showed different spatial distributions in the PS films, which had a strong influence on the film wettability, dewetting dynamics, and mechanism. With 0.5 wt % additive, PhE-PbI4 formed a noncontinuous diffusion layer, which caused a continuous hole nucleation in the film. With about 1 wt % additive, a continuous gradient distribution layer of PhE-PbI4 formed in the film, which inhibited the dewetting.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel method for immobilization of tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)(3)Cl-2) on electrode surfaces based on the vapor-surface sol-gel deposition strategy is first demonstrated in this paper. Ru(bpy)(3)Cl-2 immobilized sol-gel (Ru(bpy)(3)Cl-2/sol-gel) films were characterized by UV-vis spectroscopy and field-emitted scanning electron microscopy (FE-SEM). These results showed that Ru(bpy)(3)Cl-2 was successfully incorporated into the silica sol-gel film. it was found that many irregular Ru(bpy)(3)Cl-2/sol-gel clusters were formed on surfaces through one deposition and thick sol-gel films were observed after further deposition.