982 resultados para Pollutant emissions matrix
Resumo:
A novel technique was used to measure emission factors for commonly used commercial aircraft including a range of Boeing and Airbus airframes under real world conditions. Engine exhaust emission factors for particles in terms of particle number and mass (PM2.5), along with those for CO2, and NOx were measured for over 280 individual aircraft during the various modes of landing/takeoff (LTO) cycle. Results from this study show that particle number, and NOx emission factors are dependant on aircraft engine thrust level. Minimum and maximum emissions factors for particle number, PM2.5, and NOx emissions were found to be in the range of 4.16×1015-5.42×1016 kg-1, 0.03-0.72 g.kg-1, and 3.25-37.94 g.kg-1 respectively for all measured airframes and LTO cycle modes. Number size distributions of emitted particles for the naturally diluted aircraft plumes in each mode of LTO cycle showed that particles were predominantly in the range of 4 to 100 nm in diameter in all cases. In general, size distributions exhibit similar modality during all phases of the LTO cycle. A very distinct nucleation mode was observed in all particle size distributions, except for taxiing and landing of A320 aircraft. Accumulation modes were also observed in all particle size distributions. Analysis of aircraft engine emissions during LTO cycle showed that aircraft thrust level is considerably higher during taxiing than idling suggesting that International Civil Aviation Organization (ICAO) standards need to be modified as the thrust levels for taxi and idle are considered to be the same (7% of total thrust) [1].
Resumo:
Exhaust emissions from thirteen compressed natural gas (CNG) and nine ultralow sulphur diesel in-service transport buses were monitored on a chassis dynamometer. Measurements were carried out at idle and at three steady engine loads of 25%, 50% and 100% of maximum power at a fixed speed of 60 kmph. Emission factors were estimated for particle mass and number, carbon dioxide and oxides of nitrogen for two types of CNG buses (Scania and MAN, compatible with Euro 2 and 3 emission standards, respectively) and two types of diesel buses (Volvo Pre-Euro/Euro1 and Mercedez OC500 Euro3). All emission factors increased with load. The median particle mass emission factor for the CNG buses was less than 1% of that from the diesel buses at all loads. However, the particle number emission factors did not show a statistically significant difference between buses operating on the two types of fuel. In this paper, for the very first time, particle number emission factors are presented at four steady state engine loads for CNG buses. Median values ranged from the order of 1012 particles min-1 at idle to 1015 particles km-1 at full power. Most of the particles observed in the CNG emissions were in the nanoparticle size range and likely to be composed of volatile organic compounds The CO2 emission factors were about 20% to 30% greater for the diesel buses over the CNG buses, while the oxides of nitrogen emission factors did not show any difference due to the large variation between buses.
Resumo:
The measurement of submicrometre (< 1.0 m) and ultrafine particles (diameter < 0.1 m) number concentration have attracted attention since the last decade because the potential health impacts associated with exposure to these particles can be more significant than those due to exposure to larger particles. At present, ultrafine particles are not regularly monitored and they are yet to be incorporated into air quality monitoring programs. As a result, very few studies have analysed their long-term and spatial variations in ultrafine particle concentration, and none have been in Australia. To address this gap in scientific knowledge, the aim of this research was to investigate the long-term trends and seasonal variations in particle number concentrations in Brisbane, Australia. Data collected over a five-year period were analysed using weighted regression models. Monthly mean concentrations in the morning (6:00-10:00) and the afternoon (16:00-19:00) were plotted against time in months, using the monthly variance as the weights. During the five-year period, submicrometre and ultrafine particle concentrations increased in the morning by 105.7% and 81.5% respectively whereas in the afternoon there was no significant trend. The morning concentrations were associated with fresh traffic emissions and the afternoon concentrations with the background. The statistical tests applied to the seasonal models, on the other hand, indicated that there was no seasonal component. The spatial variation in size distribution in a large urban area was investigated using particle number size distribution data collected at nine different locations during different campaigns. The size distributions were represented by the modal structures and cumulative size distributions. Particle number peaked at around 30 nm, except at an isolated site dominated by diesel trucks, where the particle number peaked at around 60 nm. It was found that ultrafine particles contributed to 82%-90% of the total particle number. At the sites dominated by petrol vehicles, nanoparticles (< 50 nm) contributed 60%-70% of the total particle number, and at the site dominated by diesel trucks they contributed 50%. Although the sampling campaigns took place during different seasons and were of varying duration these variations did not have an effect on the particle size distributions. The results suggested that the distributions were rather affected by differences in traffic composition and distance to the road. To investigate the occurrence of nucleation events, that is, secondary particle formation from gaseous precursors, particle size distribution data collected over a 13 month period during 5 different campaigns were analysed. The study area was a complex urban environment influenced by anthropogenic and natural sources. The study introduced a new application of time series differencing for the identification of nucleation events. To evaluate the conditions favourable to nucleation, the meteorological conditions and gaseous concentrations prior to and during nucleation events were recorded. Gaseous concentrations did not exhibit a clear pattern of change in concentration. It was also found that nucleation was associated with sea breeze and long-range transport. The implications of this finding are that whilst vehicles are the most important source of ultrafine particles, sea breeze and aged gaseous emissions play a more important role in secondary particle formation in the study area.
Resumo:
Pollutants originating with roof runoff can have a significant impact to urban stormwater quality. This signifies the importance of understanding pollutant processes on roof surfaces. Additionally, knowledge of pollutant processes on roof surfaces is important as roofs are used as the primary catchment surface for domestic rainwater harvesting. In recent years, rainwater harvesting has become one of the primary sustainable water management techniques to counteract the growing demand for potable water. Similar to all impervious services, pollutants associated with roof runoff undergo two primary processes: build-up and wash-off. The knowledge relating to these processes is limited. This paper presents outcomes of an in-depth research study into pollutant build-up and wash-off for roof surfaces. The knowledge will be important in order to develop appropriate strategies to safeguard rainwater users from possible health risks.
Resumo:
Ameliorated strategies were put forward to improve the model predictive control in reducing the wind induced vibration of spatial latticed structures. The dynamic matrix control (DMC) predictive method was used and the reference trajectory which is called the decaying functions was suggested for the analysis of spatial latticed structure (SLS) under wind loads. The wind-induced vibration control model of SLS with improved DMC model predictive control was illustrated, then the different feedback strategies were investigated and a typical SLS was taken as example to investigate the reduction of wind-induced vibration. In addition, the robustness and reliability of DMC strategy were discussed by varying the model configurations.
Resumo:
The ideas for this CRC research project are based directly on Sidwell, Kennedy and Chan (2002). That research examined a number of case studies to identify the characteristics of successful projects. The findings were used to construct a matrix of best practice project delivery strategies. The purpose of this literature review is to test the decision matrix against established theory and best practice in the subject of construction project management.
Resumo:
The Co-operative Research Centre for Construction Innovation (CRC-CI) is funding a project known as Value Alignment Process for Project Delivery. The project consists of a study of best practice project delivery and the development of a suite of products, resources and services to guide project teams towards the best procurement approach for a specific project or group of projects. These resources will be focused on promoting the principles that underlie best practice project delivery rather than simply identifying an off-the-shelf procurement system. This project builds on earlier work by Sidwell, Kennedy and Chan (2002), on re-engineering the construction delivery process, which developed a procurement framework in the form of a Decision Matrix
Resumo:
The effective management of bridge stock involves making decisions as to when to repair, remedy, or do nothing, taking into account the financial and service life implications. Such decisions require a reliable diagnosis as to the cause of distress and an understanding of the likely future degradation. Such diagnoses are based on a combination of visual inspections, laboratory tests on samples and expert opinions. In addition, the choice of appropriate laboratory tests requires an understanding of the degradation mechanisms involved. Under these circumstances, the use of expert systems or evaluation tools developed from “realtime” case studies provides a promising solution in the absence of expert knowledge. This paper addresses the issues in bridge infrastructure management in Queensland, Australia. Bridges affected by alkali silica reaction and chloride induced corrosion have been investigated and the results presented using a mind mapping tool. The analysis highights that several levels of rules are required to assess the mechanism causing distress. The systematic development of a rule based approach is presented. An example of this application to a case study bridge has been used to demonstrate that preliminary results are satisfactory.
Resumo:
One of the key issues facing public asset owners is the decision of refurbishing aged built assets. This decision requires an assessment of the “remaining service life” of the key components in a building. The remaining service life is significantly dependent upon the existing condition of the asset and future degradation patterns considering durability and functional obsolescence. Recently developed methods on Residual Service Life modelling, require sophisticated data that are not readily available. Most of the data available are in the form of reports prior to undertaking major repairs or in the form of sessional audit reports. Valuable information from these available sources can serve as bench marks for estimating the reference service life. The authors have acquired similar informations from a public asset building in Melbourne. Using these informations, the residual service life of a case study building façade has been estimated in this paper based on state-of-the-art approaches. These estimations have been evaluated against expert opinion. Though the results are encouraging it is clear that the state-of-the-art methodologies can only provide meaningful estimates provided the level and quality of data are available. This investigation resulted in the development of a new framework for maintenance that integrates the condition assessment procedures and factors influencing residual service life
Resumo:
The indoor air quality (IAQ) in buildings is currently assessed by measurement of pollutants during building operation for comparison with air quality standards. Current practice at the design stage tries to minimise potential indoor air quality impacts of new building materials and contents by selecting low-emission materials. However low-emission materials are not always available, and even when used the aggregated pollutant concentrations from such materials are generally overlooked. This paper presents an innovative tool for estimating indoor air pollutant concentrations at the design stage, based on emissions over time from large area building materials, furniture and office equipment. The estimator considers volatile organic compounds, formaldehyde and airborne particles from indoor materials and office equipment and the contribution of outdoor urban air pollutants affected by urban location and ventilation system filtration. The estimated pollutants are for a single, fully mixed and ventilated zone in an office building with acceptable levels derived from Australian and international health-based standards. The model acquires its dimensional data for the indoor spaces from a 3D CAD model via IFC files and the emission data from a building products/contents emissions database. This paper describes the underlying approach to estimating indoor air quality and discusses the benefits of such an approach for designers and the occupants of buildings.
Resumo:
Motor vehicles are major emitters of gaseous and particulate pollution in urban areas, and exposure to particulate pollution can have serious health effects, ranging from respiratory and cardiovascular disease to mortality. Motor vehicle tailpipe particle emissions span a broad size range from 0.003-10µm, and are measured as different subsets of particle mass concentrations or particle number count. However, no comprehensive inventories currently exist in the international published literature covering this wide size range. This paper presents the first published comprehensive inventory of motor vehicle tailpipe particle emissions covering the full size range of particles emitted. The inventory was developed for urban South-East Queensland by combining two techniques from distinctly different disciplines, from aerosol science and transport modelling. A comprehensive set of particle emission factors were combined with traffic modelling, and tailpipe particle emissions were quantified for particle number (ultrafine particles), PM1, PM2.5 and PM10 for light and heavy duty vehicles and buses. A second aim of the paper involved using the data derived in this inventory for scenario analyses, to model the particle emission implications of different proportions of passengers travelling in light duty vehicles and buses in the study region, and to derive an estimate of fleet particle emissions in 2026. It was found that heavy duty vehicles (HDVs) in the study region were major emitters of particulate matter pollution, and although they contributed only around 6% of total regional vehicle kilometres travelled, they contributed more than 50% of the region’s particle number (ultrafine particles) and PM1 emissions. With the freight task in the region predicted to double over the next 20 years, this suggests that HDVs need to be a major focus of mitigation efforts. HDVs dominated particle number (ultrafine particles) and PM1 emissions; and LDV PM2.5 and PM10 emissions. Buses contributed approximately 1-2% of regional particle emissions.
Increase in particle number emissions from motor vehicles due to interruption of steady traffic flow
Resumo:
We assess the increase in particle number emissions from motor vehicles driving at steady speed when forced to stop and accelerate from rest. Considering the example of a signalized pedestrian crossing on a two-way single-lane urban road, we use a complex line source method to calculate the total emissions produced by a specific number and mix of light petrol cars and diesel passenger buses and show that the total emissions during a red light is significantly higher than during the time when the light remains green. Replacing two cars with one bus increased the emissions by over an order of magnitude. Considering these large differences, we conclude that the importance attached to particle number emissions in traffic management policies be reassessed in the future.
Resumo:
Toll plazas are particularly susceptible to build-ups of vehicle-emitted pollutants because vehicles pass through in low gear. To look at this, three-dimensional computational fluid dynamics simulations of pollutant dispersion are used on the standard k e turbulence model. The effects of wind speed, wind direction and topography on pollutant dispersion were discussed. The Wuzhuang toll plaza on the Hefei-Nanjing expressway is considered, and the effects of the retaining walls along both sides of the plaza on pollutant dispersion is analysed. There are greater pollutant concentrations near the tollbooths as the angle between the direction of the wind and traffic increases implying that retaining walls impede dispersion. The slope of the walls has little influence on the variations in pollutant concentration.
Resumo:
Particle emissions, volatility, and the concentration of reactive oxygen species (ROS) were investigated for a pre-Euro I compression ignition engine to study the potential health impacts of employing ethanol fumigation technology. Engine testing was performed in two separate experimental campaigns with most testing performed at intermediate speed with four different load settings and various ethanol substitutions. A scanning mobility particle sizer (SMPS) was used to determine particle size distributions, a volatilization tandem differential mobility analyzer (V-TDMA) was used to explore particle volatility, and a new profluorescent nitroxide probe, BPEAnit, was used to investigate the potential toxicity of particles. The greatest particulate mass reduction was achieved with ethanol fumigation at full load, which contributed to the formation of a nucleation mode. Ethanol fumigation increased the volatility of particles by coating the particles with organic material or by making extra organic material available as an external mixture. In addition, the particle-related ROS concentrations increased with ethanol fumigation and were associated with the formation of a nucleation mode. The smaller particles, the increased volatility, and the increase in potential particle toxicity with ethanol fumigation may provide a substantial barrier for the uptake of fumigation technology using ethanol as a supplementary fuel.
Resumo:
This article explores two matrix methods to induce the ``shades of meaning" (SoM) of a word. A matrix representation of a word is computed from a corpus of traces based on the given word. Non-negative Matrix Factorisation (NMF) and Singular Value Decomposition (SVD) compute a set of vectors corresponding to a potential shade of meaning. The two methods were evaluated based on loss of conditional entropy with respect to two sets of manually tagged data. One set reflects concepts generally appearing in text, and the second set comprises words used for investigations into word sense disambiguation. Results show that for NMF consistently outperforms SVD for inducing both SoM of general concepts as well as word senses. The problem of inducing the shades of meaning of a word is more subtle than that of word sense induction and hence relevant to thematic analysis of opinion where nuances of opinion can arise.