897 resultados para Polinização artificial
Resumo:
Over the past two decades, many ingenious efforts have been made in protein remote homology detection. Because homologous proteins often diversify extensively in sequence, it is challenging to demonstrate such relatedness through entirely sequence-driven searches. Here, we describe a computational method for the generation of `protein-like' sequences that serves to bridge gaps in protein sequence space. Sequence profile information, as embodied in a position-specific scoring matrix of multiply aligned sequences of bona fide family members, serves as the starting point in this algorithm. The observed amino acid propensity and the selection of a random number dictate the selection of a residue for each position in the sequence. In a systematic manner, and by applying a `roulette-wheel' selection approach at each position, we generate parent family-like sequences and thus facilitate an enlargement of sequence space around the family. When generated for a large number of families, we demonstrate that they expand the utility of natural intermediately related sequences in linking distant proteins. In 91% of the assessed examples, inclusion of designed sequences improved fold coverage by 5-10% over searches made in their absence. Furthermore, with several examples from proteins adopting folds such as TIM, globin, lipocalin and others, we demonstrate that the success of including designed sequences in a database positively sensitized methods such as PSI-BLAST and Cascade PSI-BLAST and is a promising opportunity for enormously improved remote homology recognition using sequence information alone.
Resumo:
Artificial viscosity in SPH-based computations of impact dynamics is a numerical artifice that helps stabilize spurious oscillations near the shock fronts and requires certain user-defined parameters. Improper choice of these parameters may lead to spurious entropy generation within the discretized system and make it over-dissipative. This is of particular concern in impact mechanics problems wherein the transient structural response may depend sensitively on the transfer of momentum and kinetic energy due to impact. In order to address this difficulty, an acceleration correction algorithm was proposed in Shaw and Reid (''Heuristic acceleration correction algorithm for use in SPH computations in impact mechanics'', Comput. Methods Appl. Mech. Engrg., 198, 3962-3974) and further rationalized in Shaw et al. (An Optimally Corrected Form of Acceleration Correction Algorithm within SPH-based Simulations of Solid Mechanics, submitted to Comput. Methods Appl. Mech. Engrg). It was shown that the acceleration correction algorithm removes spurious high frequency oscillations in the computed response whilst retaining the stabilizing characteristics of the artificial viscosity in the presence of shocks and layers with sharp gradients. In this paper, we aim at gathering further insights into the acceleration correction algorithm by further exploring its application to problems related to impact dynamics. The numerical evidence in this work thus establishes that, together with the acceleration correction algorithm, SPH can be used as an accurate and efficient tool in dynamic, inelastic structural mechanics. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Artificial Neural Networks (ANNs) have been found to be a robust tool to model many non-linear hydrological processes. The present study aims at evaluating the performance of ANN in simulating and predicting ground water levels in the uplands of a tropical coastal riparian wetland. The study involves comparison of two network architectures, Feed Forward Neural Network (FFNN) and Recurrent Neural Network (RNN) trained under five algorithms namely Levenberg Marquardt algorithm, Resilient Back propagation algorithm, BFGS Quasi Newton algorithm, Scaled Conjugate Gradient algorithm, and Fletcher Reeves Conjugate Gradient algorithm by simulating the water levels in a well in the study area. The study is analyzed in two cases-one with four inputs to the networks and two with eight inputs to the networks. The two networks-five algorithms in both the cases are compared to determine the best performing combination that could simulate and predict the process satisfactorily. Ad Hoc (Trial and Error) method is followed in optimizing network structure in all cases. On the whole, it is noticed from the results that the Artificial Neural Networks have simulated and predicted the water levels in the well with fair accuracy. This is evident from low values of Normalized Root Mean Square Error and Relative Root Mean Square Error and high values of Nash-Sutcliffe Efficiency Index and Correlation Coefficient (which are taken as the performance measures to calibrate the networks) calculated after the analysis. On comparison of ground water levels predicted with those at the observation well, FFNN trained with Fletcher Reeves Conjugate Gradient algorithm taken four inputs has outperformed all other combinations.
Resumo:
Ground management problems are typically solved by the simulation-optimization approach where complex numerical models are used to simulate the groundwater flow and/or contamination transport. These numerical models take a lot of time to solve the management problems and hence become computationally expensive. In this study, Artificial Neural Network (ANN) and Particle Swarm Optimization (PSO) models were developed and coupled for the management of groundwater of Dore river basin in France. The Analytic Element Method (AEM) based flow model was developed and used to generate the dataset for the training and testing of the ANN model. This developed ANN-PSO model was applied to minimize the pumping cost of the wells, including cost of the pipe line. The discharge and location of the pumping wells were taken as the decision variable and the ANN-PSO model was applied to find out the optimal location of the wells. The results of the ANN-PSO model are found similar to the results obtained by AEM-PSO model. The results show that the ANN model can reduce the computational burden significantly as it is able to analyze different scenarios, and the ANN-PSO model is capable of identifying the optimal location of wells efficiently.
Resumo:
In this paper, a method for the tuning the membership functions of a Mamdani type Fuzzy Logic Controller (FLC) using the Clonal Selection Algorithm(CSA) a model of the Artificial Immune System(AIS) paradigm is examined. FLC's are designed for two problems, firstly the linear cart centering problem and secondly the highly nonlinear inverted pendulum problem. The FLC tuned by AIS is compared with FLC tuned by GA. In order to check the robustness of the designed PLC's white noise was added to the system, further, the masses of the cart and the length and mass of the pendulum are changed. The PLC's were also tested in the presence of faulty rules. Finally, Kruskal Wallis test was performed to compare the performance of the GA and AIS. An insight into the algorithms are also given by studying the effect of the important parameters of GA and AIS.
Resumo:
This paper presents a new hierarchical clustering algorithm for crop stage classification using hyperspectral satellite image. Amongst the multiple benefits and uses of remote sensing, one of the important application is to solve the problem of crop stage classification. Modern commercial imaging satellites, owing to their large volume of satellite imagery, offer greater opportunities for automated image analysis. Hence, we propose a unsupervised algorithm namely Hierarchical Artificial Immune System (HAIS) of two steps: splitting the cluster centers and merging them. The high dimensionality of the data has been reduced with the help of Principal Component Analysis (PCA). The classification results have been compared with K-means and Artificial Immune System algorithms. From the results obtained, we conclude that the proposed hierarchical clustering algorithm is accurate.
Resumo:
Protein functional annotation relies on the identification of accurate relationships, sequence divergence being a key factor. This is especially evident when distant protein relationships are demonstrated only with three-dimensional structures. To address this challenge, we describe a computational approach to purposefully bridge gaps between related protein families through directed design of protein-like ``linker'' sequences. For this, we represented SCOP domain families, integrated with sequence homologues, as multiple profiles and performed HMM-HMM alignments between related domain families. Where convincing alignments were achieved, we applied a roulette wheel-based method to design 3,611,010 protein-like sequences corresponding to 374 SCOP folds. To analyze their ability to link proteins in homology searches, we used 3024 queries to search two databases, one containing only natural sequences and another one additionally containing designed sequences. Our results showed that augmented database searches showed up to 30% improvement in fold coverage for over 74% of the folds, with 52 folds achieving all theoretically possible connections. Although sequences could not be designed between some families, the availability of designed sequences between other families within the fold established the sequence continuum to demonstrate 373 difficult relationships. Ultimately, as a practical and realistic extension, we demonstrate that such protein-like sequences can be ``plugged-into'' routine and generic sequence database searches to empower not only remote homology detection but also fold recognition. Our richly statistically supported findings show that complementary searches in both databases will increase the effectiveness of sequence-based searches in recognizing all homologues sharing a common fold. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
It is no exaggeration to state that the energy crisis is the most serious challenge that we face today. Among the strategies to gain access to reliable, renewable energy, the use of solar energy has clearly emerged as the most viable option. A promising direction in this context is artificial photosynthesis. In this article, we briefly describe the essential features of artificial photosynthesis in comparison with natural photosynthesis and point out the modest success that we have had in splitting water to produce oxygen and hydrogen, specially the latter.
Resumo:
Robotic surgical tools used in minimally invasive surgeries (MIS) require miniaturized and reliable actuators for precise positioning and control of the end-effector. Miniature pneumatic artificial muscles (MPAMs) are a good choice due to their inert nature, high force to weight ratio, and fast actuation. In this paper, we present the development of miniaturized braided pneumatic muscles with an outer diameter of similar to 1.2 mm, a high contraction ratio of about 18%, and capable of providing a pull force in excess of 4 N at a supply pressure of 0.8 MPa. We present the details of the developed experimental setup, experimental data on contraction and force as a function of applied pressure, and characterization of the MPAM. We also present a simple kinematics and experimental data based model of the braided pneumatic muscle and show that the model predicts contraction in length to within 20% of the measured value. Finally, a robust controller for the MPAMs is developed and validated with experiments and it is shown that the MPAMs have a time constant of similar to 10 ms thereby making them suitable for actuating endoscopic and robotic surgical tools.
Resumo:
Conventional solids are prepared from building blocks that are conceptually no larger than a hundred atoms. While van der Waals and dipole-dipole interactions also influence the formation of these materials, stronger interactions, referred to as chemical bonds, play a more decisive role in determining the structures of most solids. Chemical bonds that hold such materials together are said to be ionic, covalent, metallic, dative, or otherwise a combination of these. Solids that utilize semiconductor nanocrystal quantum dots as building units have been demonstrated to exist; however, the interparticle forces in such materials are decidedly not chemical. Here we demonstrate the formation of charge transfer states in a binary quantum dot mixture. Charge is observed to reside in quantum confined states of one of the participating quantum dots. These interactions lead to materials that may be regarded as the nanoscale analog of an ionic solid. The process by which these materials form has interesting parallels to chemical reactions in conventional chemistry.
Resumo:
El presente trabajo se realizó en la Empresa Genética Roberto Alvarado (Chiltepe), ubicada en la península de Chiltepe, en el departamento de Managua, con el objetivo de establecer la mejor forma de suministrar dietas liquidas, establecer la asociación entre los niveles de calostro con los comportamientos productivos de terneras bajo crianza artificial. Se emplearon 18 terneras de raza Holstein F., con un promedio de 40 Kg+- 8 kg de peso vivo, las que fueron distribuidas aleatoriamente en tres grupos asignándoles los siguientes tratamientos: T15 litros de leche entera/día (testigo) ; T2: 5 Litros de mezcla de calostro y leche/día (20:80) y T3: 5 Litros de mezcla de calostro y leche/día (40:60). Adicionalmente todos los tratamientos recibieron "adibitum", alimento solido a base de forraje Taiwán picado, heno de pasto estrella, agua y concentrado iniciador. El manejo de las terneras se realizó de manera similar a la utilizada en los centros de crianza de las empresas. Se efectuaron pasajes semanales individuales y se registró el consumo de concentrado. Se realizó análisis bromatológico de las dietas liquidas según metodología A.O.A.C. (1984), así como un análisis económico de las mismas. Al realizar ANDEVA para la variable GMD28, GMD49 y GMD70, se encontró para la primera que no existen diferencias (P<0.05) y para la dos últimas si existen diferencias significativas (P<0.05). El ANDECOVA (mínimo cuadrado realizado para la variable P28, utilizando la covariable PI mostró que no existen diferencias entre las dietas, y diferencias significativas (P<0.05) para la covariable. Para la variable Cons28, utilizando como variable el PI, se encontró diferencias significativas entre las dietas y no significativas para la variable concomitante. Al analizar la variable P49 usando como variable concomitante el P28, mostró diferencias estadísticamente significativas (P<0.05) tanto para las dietas como para la covariable. Para la variable P70, utilizando como covariable P49, se encontró que existen diferencias significativas para las dietas suministradas así como para la variable concomitante. Posteriormente al realizar prueba de separación de medidas con rangos múltiples utilizando test de Duncan, para las variables GMD14, GMD28, GMD49 y GMD70 se encontró el siguiente orden de mérito para las dietas: Calostro: Leche (40:60) a; Calostro: Leche (20:80)a, y Calostro: Leche (0:100) b. El análisis económico mostro que las dietas T3 y T2 tiene costos notablemente inferiores en relación al costo del T1. Estos análisis conllevan a establecer un orden decreciente del efecto de las dietas liquidas sobre la GMD y el PF según el siguiente esquema: T3 (40:60)>T2 (20:80)>T1 (0.100). Encontrando que la dieta más efectiva es la del T3.
Resumo:
Este experimento se realizó en la Granja Experimental Porcina (G.E.P), Cofradía, Masaya, con 82 cerdas del cuarto parto, 30 servidas a través de inseminación artificial (I.A) y 52 cerdas por monta natural (M.N); iniciando en mayo de 1,995 hasta mayo de 1,996 con el objetivo de evaluar los parámetros reproductivos y económicos en ambos sistemas de monta. Los dos grupos de cerdas reproductoras estaban compuestos por las razas LANDRACE, YORKSHIRE y DUROC. Las variables evaluadas fueron: Tasa de concepción (T.C) y tasa de parición (T.P), números de crías por partos (N.C.P), peso vivo promedio del lechón en la camada al nacer (P.V.L.C), relación beneficio-costo (B-C). Los resultados finales comprobados al 5% de significancia estadísticas fueron: T.P en I.A con 56.66% menor que en M.N con 76.92%, en N.C.P para I.A con 7.06, menor que en M.N de 8.725, P.V.L.C en I.A de 1.85 kg, similar a 1.74 kg, en MN. Para la relación B-C en I.A fue de 0.53 córdobas y para M.N de 0.56 córdobas.
Resumo:
El presente trabajo de tesis se realizó en la granja experimental porcina MAGFOR-Misión China de la república de Taiwán, ubicada en Cofradía. El estudio consistió en la evaluación de los parámetros reproductivos en grupos de cerdas obtenidos por inseminación artificial y grupos obtenidos a través de la monta natural, también se aborda el tema de la consanguinidad y sus consecuencias como un factor negativo en la fijación de caracteres indeseables, esto sucede en las poblaciones en las que existe una alta homocigosis debido al origen común del material genético (padres emparentados). Las variables evaluadas en el presente trabajo fueron: tamaño de la camada al nacimiento, peso promedio de los lechones al nacimiento, peso promedio de los lechones al destete e intervalo parto parto. para el análisis estadístico se elaboraron tablas de contingencias por cada una de las variables con base en los promedios. Para la variable tamaño de la camada al nacimiento se obtuvo para el tratamiento inseminación artificial un promedio de 9.16 lechones y para la monta natural un promedio de 9.89 lechones al contrastar las medias de los dos tratamientos se obtuvo un valor de t de 0.88 que comparado con el valor tabulado al 5% resulto no significativo al observar el comportamiento de las diferentes razas ,la yorkshire obtuvo los mayores promedios en inseminación el caso especifico de esta habían muy pocos ejemplares 6 . Se trabajo en condiciones normales de producción lo cual pudo influir en estos resultados debido al tamaiio de la muestra en esta raza. Los resultados para la variable peso promedio de los lechones al nacimiento, arrojaron un promedio de 1.76 Kg. para las camadas obtenidas por inseminación artificial y 1.67kg para las obtenidas por el método de monta natural en las observaciones de los promedios por razas, se obtuvo el mayor peso a favor de la raza Landrace con 1.99 Kg. seguido de la raza duroc con 1.85 Kg. en el tratamiento de inseminación artificial, y para la monta natural el menor peso lo obtuvo la raza duroc con 1.44 Kg. y elmayor peso fue también la raza Landrace. la raza Yorkshire mostró un comportamiento similar tanto en inseminacion artificial, como en monta natural. Para la variable peso promedio de los lechones al destete, se obtuvo un peso promedio de 7.39 Kg. para los lechones obtenidos por el método de inseminacion artificial y un peso promedio de 6.71 Kg. en el caso de lechones obtenidos por monta natural al evaluar las razas, la raza Landrace obtuvo el mayor peso al destete con 8.01 Kg. como era de esperar al obtener los mayores promedios en peso al nacimiento esto fue para las camadas obtenidas por inseminacion artificial. en el caso. de los lechones obtenidos mediante la monta natural el mayor peso correspondió a la raza Hampshire pudiendo haber influido el numero de lechones, ya que esta fue la que presento el menor numero la raza Yorkshire tuvo en este caso un comportamiento similar en los dos tratamientos. Para la variable intervalo parto-parto, en el caso de las cerdas servidas por el método de inseminacion artificial presentaron un IPP de 5.52 meses o sea 167 días y las cerdas servidas por monta natural obtuvieron un IPP de5.01 meses o 152 días. En la prueba de hipótesis tanto como el contraste de varianza, los resultados fueron significativos y una diferencia de 15 días vacíos en una hembra eleva los costos de producción de una manera considerable por esta razón un IPP como el de la inseminación artificial solo se justifica en la granja experimental porcina en un numero especifico de cerdas elite y como apoyo al mejoramiento genético del hato porcino de esta así como del hato nacional.