Experimental Characterization and Control of Miniaturized Pneumatic Artificial Muscle


Autoria(s): Chakravarthy, Shanthanu; Aditya, K; Ghosal, Ashitava
Data(s)

2014

Resumo

Robotic surgical tools used in minimally invasive surgeries (MIS) require miniaturized and reliable actuators for precise positioning and control of the end-effector. Miniature pneumatic artificial muscles (MPAMs) are a good choice due to their inert nature, high force to weight ratio, and fast actuation. In this paper, we present the development of miniaturized braided pneumatic muscles with an outer diameter of similar to 1.2 mm, a high contraction ratio of about 18%, and capable of providing a pull force in excess of 4 N at a supply pressure of 0.8 MPa. We present the details of the developed experimental setup, experimental data on contraction and force as a function of applied pressure, and characterization of the MPAM. We also present a simple kinematics and experimental data based model of the braided pneumatic muscle and show that the model predicts contraction in length to within 20% of the measured value. Finally, a robust controller for the MPAMs is developed and validated with experiments and it is shown that the MPAMs have a time constant of similar to 10 ms thereby making them suitable for actuating endoscopic and robotic surgical tools.

Formato

application/pdf

Identificador

http://eprints.iisc.ernet.in/50781/1/jou_med_dev_tra_asm_8-4_2014.pdf

Chakravarthy, Shanthanu and Aditya, K and Ghosal, Ashitava (2014) Experimental Characterization and Control of Miniaturized Pneumatic Artificial Muscle. In: JOURNAL OF MEDICAL DEVICES-TRANSACTIONS OF THE ASME, 8 (4).

Publicador

ASME

Relação

http://dx.doi.org/ 10.1115/1.4028420

http://eprints.iisc.ernet.in/50781/

Palavras-Chave #Mechanical Engineering
Tipo

Journal Article

PeerReviewed