984 resultados para Polar Granules
Resumo:
Experiments have been carried out to investigate the polar distribution of atomic material ablated during the pulsed laser deposition of Cu in vacuum. Data were obtained as functions of focused laser spot size and power density. Thin films were deposited onto flat glass substrates and thickness profiles were transformed into polar atomic flux distributions of the form f(theta)=cos(n) theta. At constant focused laser power density on target, I=4.7+/-0.3X10(8) W/cm(2), polar distributions were found to broaden with a reduction in the focused laser spot size. The polar distribution exponent n varied from 15+/-2 to 7+/-1 for focused laser spot diameter variation from 2.5 to 1.4 mm, respectively, with the laser beam exhibiting a circular aspect on target. With the focused laser spot size held constant at phi=1.8 mm, polar distributions were observed to broaden with a reduction in the focused laser power density on target, with the associated polar distribution exponent n varying from 13+/-1.5 to 8+/-1 for focused laser power density variation from 8.3+/-0.3X10(8) to 2.2+/-0.1X10(8) W/cm(2) respectively. Data were compared with an analytical model available within the literature, which correctly predicts broadening of the polar distribution with a reduction in focused laser spot size and with a reduction in focused laser power density, although the experimentally observed magnitude was greater than that predicted in both cases. (C) 1996 American Institute of Physics.
Resumo:
Being able to predict the properties of granules from the knowledge of the process and formulation variables is what most industries are striving for. This research uses experimental design to investigate the effect of process variables and formulation variables on mechanical properties of pharmaceutical granules manufactured from a classical blend of lactose and starch using hydroxypropyl cellulose (HPC) as the binder. The process parameters investigated were granulation time and impeller speed whilst the formulation variables were starch-to-lactose ratio and HPC concentration. The granule properties investigated include granule packing coefficient and granule strength. The effect of some components of the formulation on mechanical properties would also depend on the process variables used in granulation process. This implies that by subjecting the same formulation to different process conditions results in products with different properties. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Heterointerface stabilization of a distinct nonpolar BiFeO3 phase occurs simultaneously with changes in octahedral tilts. The resulting phase arises via suppression of polarization by a structural order parameter and can thus be identified as anti-ferroelectric (Fe displacements - bottom panel). The phase is metastable and can be switched into a polar ferroelectric state (top panel) under an applied electric bias.
Resumo:
This study investigates the production of organic fertilizer using Anaerobic Digestate (as a nutrient source) and limestone powder as the raw materials. A two-level factorial experimental design was used to determine the influence of process variables on the nutrient homogeneity within the granules. Increasing the liquid-to-solid ratio during granulation resulted in increased granule nutrient homogeneity. Increasing the processing time and the impeller speed were also found to increase the nutrient homogeneity. In terms of nutrients release into deionized water, the granules effectively released both potassium and phosphate into solution. © 2012 Elsevier Ltd.
Resumo:
Impeller speed is one of the most crucial process variables that affect the properties of the granules produced in a high-shear granulator. Several reports can be found in literature that discuss the influence of impeller speed on the granules size. For instance some researchers like Knight report an increase of granule size with impeller speed [1] and [2], while others (Scheaefer et al. and Ramaker et al.) observed a decrease of granules size with increasing impeller speed [3] and [4]. However there is limited work reported in literature on the effect of the impeller speed on the mechanical properties of granules. Mechanical properties are important as they affect the performance of the granules on the other downstream process such as transportation and handling. The work reported here serves to address the missing in knowledge gap regarding the influence of impeller speed on mechanical properties granules. How the granulation system responds to the changes in the impeller speeds depends on binder that is used in the process. For this reason the two extreme cases, of a low viscosity binder system and high viscosity binder system are considered in this research. For low viscosity binder system it was observed that the granule size decreased with increasing impeller speed whilst for the high viscosity binder system the opposite was observed by Knight [1]. The granule strength, the Young's modulus and yield strength of the high viscosity granules increased with increasing impeller speed where as the opposite trends were observed for the low viscosity binder granules.
Resumo:
Instead of highly symmetrical T-symmetry cages common in self-assembly, the p-NMe2-substituted triphosphine CH3C{CH2P(4-C6H4NMe2)(3) gives open, polar C-3 symmetry cages [Ag-6(triphos)(4)X-3](3+) which lack one of the expected face-capping anions; despite its subtlety this difference occurs selectively in solution and two examples have been crystallographically characterised.
Resumo:
Polar codes are one of the most recent advancements in coding theory and they have attracted significant interest. While they are provably capacity achieving over various channels, they have seen limited practical applications. Unfortunately, the successive nature of successive cancellation based decoders hinders fine-grained adaptation of the decoding complexity to design constraints and operating conditions. In this paper, we propose a systematic method for enabling complexity-performance trade-offs by constructing polar codes based on an optimization problem which minimizes the complexity under a suitably defined mutual information based performance constraint. Moreover, a low-complexity greedy algorithm is proposed in order to solve the optimization problem efficiently for very large code lengths.
Resumo:
The overall aim of the project was to study the influence of process variables on the distribution of a model active pharmaceutical ingredient (API) during fluidised melt granulation of pharmaceutical granules with a view of optimising product characteristics. Granules were produced using common pharmaceutical excipients; lactose monohydrate using poly ethylene glycol (PEG1500) as a meltable binder. Methylene blue was used as a model API. Empirical models relating the process variables to the granules properties such as granule mean size, product homogeneity and granule strength were developed using the design of experiment approach. Fluidising air velocity and fluidising air temperature were shown to strongly influence the product properties. Optimisation studies showed that strong granules with homogeneous distribution of the active ingredient can be produced at high fluidising air velocity and at high fluidising air temperatures.
Resumo:
Small mixer impeller design is not tailored for granulation because impellers are intended for a wide range of processes. The aim of this research was to evaluate the performances of several impellers to provide guidance on the selection and design for the purposes of granulation. Lactose granules were produced using wet granulation with water as a binder. A Kenwood KM070 mixer was used as a standard apparatus and five impeller designs with different shapes and surface areas were used. The efficacy of granulate formation was measured by adding an optically sensitive tracer to determine variations in active ingredient content across random samples of granules from the same size classes. It was found that impeller design influenced the homogeneity of the granules and therefore can affect final product performance. The variation in active ingredient content across granules of differing size was also investigated. The results show that small granules were more potent than larger granules.
Resumo:
The objective of this work was to investigate the feasibility of using a novel granulation technique, namely, fluidized hot melt granulation (FHMG), to prepare gastroretentive extended-release floating granules. In this study we have utilized FHMG, a solvent free process in which granulation is achieved with the aid of low melting point materials, using Compritol 888 ATO and Gelucire 50/13 as meltable binders, in place of conventional liquid binders. The physicochemical properties, morphology, floating properties, and drug release of the manufactured granules were investigated. Granules prepared by this method were spherical in shape and showed good flowability. The floating granules exhibited sustained release exceeding 10 h. Granule buoyancy (floating time and strength) and drug release properties were significantly influenced by formulation variables such as excipient type and concentration, and the physical characteristics (particle size, hydrophilicity) of the excipients. Drug release rate was increased by increasing the concentration of hydroxypropyl cellulose (HPC) and Gelucire 50/13, or by decreasing the particle size of HPC. Floating strength was improved through the incorporation of sodium bicarbonate and citric acid. Furthermore, floating strength was influenced by the concentration of HPC within the formulation. Granules prepared in this way show good physical characteristics, floating ability, and drug release properties when placed in simulated gastric fluid. Moreover, the drug release and floating properties can be controlled by modification of the ratio or physical characteristics of the excipients used in the formulation.
Resumo:
Virgin olive oil is a high quality natural product obtained only by physical means. In addition to triacylglycerols it contains nutritionally important polar and non-polar antioxidant phenols and other bioactive ingredients. The polar fraction is a complex mixture of phenolic acids, simple phenols, derivatives of the glycosides oleuropein and ligstroside, lignans, and flavonoids. These compounds contribute significantly to the stability, flavor, and biological value of virgin olive. In the various stages of production, during storage and in the culinary uses, polar phenols and other valuable bioactive ingredients may be damaged. Oxidation, photo-oxidation, enzymic hydrolysis and heating at frying temperatures have a serious adverse effect. Due to the biological importance of the oil and its unique character, analytical methods have been developed to evaluate antioxidant activity or analyse complex phenol mixtures. These are based on radical scavenging assays and chromatographic techniques. Hyphenated methods are also used including liquid chromatography-mass spectrometry and liquid chromatography-nuclear magnetic resonance spectroscopy.
Resumo:
Brain tissue from so-called Alzheimer's disease (AD) mouse models has previously been examined using H-1 NMR-metabolomics, but comparable information concerning human AD is negligible. Since no animal model recapitulates all the features of human AD we undertook the first H-1 NMR-metabolomics investigation of human AD brain tissue. Human post-mortem tissue from 15 AD subjects and 15 age-matched controls was prepared for analysis through a series of lyophilised, milling, extraction and randomisation steps and samples were analysed using H-1 NMR. Using partial least squares discriminant analysis, a model was built using data obtained from brain extracts. Analysis of brain extracts led to the elucidation of 24 metabolites. Significant elevations in brain alanine (15.4 %) and taurine (18.9 %) were observed in AD patients (p ≤ 0.05). Pathway topology analysis implicated either dysregulation of taurine and hypotaurine metabolism or alanine, aspartate and glutamate metabolism. Furthermore, screening of metabolites for AD biomarkers demonstrated that individual metabolites weakly discriminated cases of AD [receiver operating characteristic (ROC) AUC <0.67; p < 0.05]. However, paired metabolites ratios (e.g. alanine/carnitine) were more powerful discriminating tools (ROC AUC = 0.76; p < 0.01). This study further demonstrates the potential of metabolomics for elucidating the underlying biochemistry and to help identify AD in patients attending the memory clinic