462 resultados para Poincaré lemma


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Matemática Universitária - IGCE

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Matemática - IBILCE

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The literature indicated that the fractal analysis of heart rate variability (HRV) is related to the chaos theory. However, it is not clear if the both short and long-term fractal scaling exponents of HRV are reliable for short period analysis in women. We evaluated the association of the fractal exponents of HRV with the time and frequency domain and geometric indices of HRV. We evaluated 65 healthy women between 18 and 30 years old. HRV was analyzed with a minimal number of 256 RR intervals in the time (SDNN, RMSSD, NN50 and pNN50) and frequency (LF, HF and LF/HF ratio) domains, the geometric index were also analyzed (triangular indexRRtri, triangular interpolation of RR intervals-TINN and Poincaré plot-SD1, SD2 and SD1/SD2) as well as short and long-term fractal exponents (alpha-1 and alpha-2) of the detrended fluctuation analysis (DFA). No significant correlation was observed for alpha-2 exponent with all indices. There was significant correlation of the alpha-1 exponent with RMSSD, pNN50, SDNN/RMSSD, LF (nu), HF (nu and ms2 ), LF/HF ratio, SD1 and SD1/SD2 ratio. Our data does not indicate the alpha-2 exponent to be used for 256 RR intervals and we support the alpha-1 exponent to be used for HRV analysis in this condition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently Lukierski et al. [1] defined a κ-deformed Poincaré algebra which is characterized by having the energy-momentum and angular momentum sub-algebras not deformed. Further Biedenharn et al. [2] showed that on gauging the κ-deformed electron with the electromagnetic field, one can set a limit on the allowed value of the deformation parameter ∈ ≡ 1/κ < 1 fm. We show that one gets Regge like angular excitations, J, of the mesons, non-strange and strange baryons, with a value of ∈ ∼ 0.082 fm and predict a flattening with J of the corresponding trajectories. The Regge fit improves on including deformation, particularly for the baryon spectrum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O Teorema de Poincaré-Bendixson é um resultado muito importante no estudo de Sistemas Dinâmicos, pois ele estabelece para quais tipos de conjunto limite as trajetórias de um campo de vetores em IR2 deve convergir. Neste trabalho vamos abordar a Funç˜ao do primeiro Retorno de Poincaré, além de discutir a estabilidade de Ciclos Limites e provar o Teorema de Poincaré-Bendixson.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Questo lavoro prende in esame lo schema di Hilbert di punti di C^2, il quale viene descritto assieme ad alcune sue proprietà, ad esempio la sua struttura hyper-kahleriana. Lo scopo della tesi è lo studio del polinomio di Poincaré di tale schema di Hilbert: ciò che si ottiene è una espressione del tipo serie di potenze, la quale è un caso particolare di una formula molto più generale, nota con il nome di formula di Goettsche.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Si descrive lo spazio di Poincaré tramite la sua descrizione come dodecaedro con identificazioni sul bordo. A tal proposito sono analizzate le proprietà di gruppo su S^3 (quaternioni) e le proprietà dei politopi regolari in 4 dimensioni. Infine sono calcolati gruppo fondamentale e omologia dello spazio, si dimostra che è una sfera d'omologia e vengono descritte le sue principali proprietà ponendo l'accento sull'importanza storica e matematica di questo spazio.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In questa tesi si introduce l'analisi della stabilità delle orbite periodiche mostrandone un risultato fondamentale: il Teorema di Poinaré. A tal fine sono preliminarmente riportati alcune definizioni e risultati riguardanti la stabilità delle soluzioni e l'esistenza di soluzioni periodiche

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Marshall's (1970) lemma is an analytical result which implies root-n-consistency of the distribution function corresponding to the Grenander (1956) estimator of a non-decreasing probability density. The present paper derives analogous results for the setting of convex densities on [0,\infty).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A carpet is a metric space homeomorphic to the Sierpiński carpet. We characterize, within a certain class of examples, non-self-similar carpets supporting curve families of nontrivial modulus and supporting Poincaré inequalities. Our results yield new examples of compact doubling metric measure spaces supporting Poincaré inequalities: these examples have no manifold points, yet embed isometrically as subsets of Euclidean space.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many advantages can be got in combining finite and boundary elements.It is the case, for example, of unbounded field problems where boundary elements can provide the appropriate conditions to represent the infinite domain while finite elements are suitable for more complex properties in the near domain. However, in spite of it, other disadvantages can appear. It would be, for instance, the loss of symmetry in the finite elements stiffness matrix, when the combination is made. On the other hand, in our days, with the strong irruption of the parallel proccessing the techniques of decomposition of domains are getting the interest of numerous scientists. With their application it is possible to separate the resolution of a problem into several subproblems. That would be beneficial in the combinations BEM-FEM as the loss of symmetry would be avoided and every technique would be applicated separately. Evidently for the correct application of these techniques it is necessary to establish the suitable transmission conditions in the interface between BEM domain and FEM domain. In this paper, one parallel method is presented which is based in the interface operator of Steklov Poincarè.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is an account of some aspects of the geometry of Kahler affine metrics based on considering them as smooth metric measure spaces and applying the comparison geometry of Bakry-Emery Ricci tensors. Such techniques yield a version for Kahler affine metrics of Yau s Schwarz lemma for volume forms. By a theorem of Cheng and Yau, there is a canonical Kahler affine Einstein metric on a proper convex domain, and the Schwarz lemma gives a direct proof of its uniqueness up to homothety. The potential for this metric is a function canonically associated to the cone, characterized by the property that its level sets are hyperbolic affine spheres foliating the cone. It is shown that for an n -dimensional cone, a rescaling of the canonical potential is an n -normal barrier function in the sense of interior point methods for conic programming. It is explained also how to construct from the canonical potential Monge-Ampère metrics of both Riemannian and Lorentzian signatures, and a mean curvature zero conical Lagrangian submanifold of the flat para-Kahler space.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper provides new versions of the Farkas lemma characterizing those inequalities of the form f(x) ≥ 0 which are consequences of a composite convex inequality (S ◦ g)(x) ≤ 0 on a closed convex subset of a given locally convex topological vector space X, where f is a proper lower semicontinuous convex function defined on X, S is an extended sublinear function, and g is a vector-valued S-convex function. In parallel, associated versions of a stable Farkas lemma, considering arbitrary linear perturbations of f, are also given. These new versions of the Farkas lemma, and their corresponding stable forms, are established under the weakest constraint qualification conditions (the so-called closedness conditions), and they are actually equivalent to each other, as well as equivalent to an extended version of the so-called Hahn–Banach–Lagrange theorem, and its stable version, correspondingly. It is shown that any of them implies analytic and algebraic versions of the Hahn–Banach theorem and the Mazur–Orlicz theorem for extended sublinear functions.