950 resultados para Phase transitions
Resumo:
Camu-camu is a tropical fruit with very high vitamin C content and commercialized as frozen pulp. Enthalpies of freezing, temperatures of the onset of ice melting, and glass transition temperatures of the maximally freeze-concentrated phase (T`(g)) of camu-camu pulp and of samples containing maltodextrin (DE20) and sucrose were measured by differential scanning calorimetry. Maltodextrin exhibited the largest freeze stabilization potential, increasing T`(g) from -58.2 degrees C (natural pulp) to -39.6 degrees C when 30% (w/w) maltodextrin DE 20 was added. Sucrose showed negligible effect on T`(g) but enhanced considerably the freezing point depression and less amount of ice was formed.
Resumo:
The aim of this work was to study the glass transition, the glass transition of the maximally freeze-concentrated fractions, the ice melting and the gelatinization phenomenon in dispersions of starch prepared using glycerol- water solutions. The starch concentration was maintained constant at 50 g cassava starch/100 g starch dispersions, but the concentration of the glycerol solutions was variable (C-g= 20, 40, 60, 80 and 100 mass/mass%). The phase transitions of these dispersions were studied by calorimetric methods, using a conventional differential scanning calorimeter (DSC) and a more sensitive equipment (micro-DSC). Apparently, in the glycerol diluted solutions (20 and 40%), the glycerol molecules interacted strongly with the glucose molecules of starch. While in the more concentrated glycerol domains (C-g> 40%), the behaviour was controlled by migration of water molecules from the starch granules, due to a hypertonic character of glycerol, which affected all phase transitions.
Resumo:
We study the threshold theta bootstrap percolation model on the homogeneous tree with degree b + 1, 2 <= theta <= b, and initial density p. It is known that there exists a nontrivial critical value for p, which we call p(f), such that a) for p > p(f), the final bootstrapped configuration is fully occupied for almost every initial configuration, and b) if p < p(f) , then for almost every initial configuration, the final bootstrapped configuration has density of occupied vertices less than 1. In this paper, we establish the existence of a distinct critical value for p, p(c), such that 0 < p(c) < p(f), with the following properties: 1) if p <= p(c), then for almost every initial configuration there is no infinite cluster of occupied vertices in the final bootstrapped configuration; 2) if p > p(c), then for almost every initial configuration there are infinite clusters of occupied vertices in the final bootstrapped configuration. Moreover, we show that 3) for p < p(c), the distribution of the occupied cluster size in the final bootstrapped configuration has an exponential tail; 4) at p = p(c), the expected occupied cluster size in the final bootstrapped configuration is infinite; 5) the probability of percolation of occupied vertices in the final bootstrapped configuration is continuous on [0, p(f)] and analytic on (p(c), p(f) ), admitting an analytic continuation from the right at p (c) and, only in the case theta = b, also from the left at p(f).
Resumo:
The recent discovery of a ferroelectric monoclinic phase in the PbZr1-xTixO3 (PZT) system attained the attention of several researchers due to the possibility of understanding the relationships between structural features and piezoelectric properties. The nature of the monoclinic phase in some PZT compositions remains controversial and unclear. In this work, structural phase transitions of PbZr0.52Ti0.48O3 ceramic were investigated by infrared spectroscopy as a function of temperature. Studies were centered on nu(1)-stretching modes and corresponding half width Wi as a function of temperature. The occurrence of the anomalies in the infrared spectra as a function of temperature suggests the following monoclinic ( LT) -> monoclinic ( HT) -> tetragonal phase transition were observed at 183 K and at 263 K.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We establish universal behaviour in the temperature dependencies of some observables in (s + id)-wave BCS superconductivity in the presence of a weak a wave. We find also a second second-order phase transition. As temperature is lowered-past the usual critical temperature T-c, a less ordered superconducting phase is created in the d wave, which changes to a more ordered phase in a (s + id) wave at T-c1 (
Resumo:
We study numerically the temperature dependencies of specific heat, susceptibility, penetration depth, and thermal conductivity of a coupled (d(x2-y2) + is)-wave Bardeen-Cooper-Schrieffer (BCS) superconductor in the presence of a weak s-wave component (1) on square lattice and (2) on a lattice with orthorhombic distortion. As the temperature is lowered past the critical temperature T-c, a less ordered superconducting phase is created in d(x2-y2) wave, which changes to a more ordered phase in (d(x2-y2) + is) wave at T-c1. This manifests in two second-order phase transitions. The two phase transitions are identified by two jumps in specific heat at T-c and T-c1. The temperature dependencies of the superconducting observables exhibit a change from power-law to exponential behavior as temperature is lowered below T-c1 and confirm the new phase transition. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
We consider the Euclidean D-dimensional -lambda vertical bar phi vertical bar(4)+eta vertical bar rho vertical bar(6) (lambda,eta > 0) model with d (d <= D) compactified dimensions. Introducing temperature by means of the Ginzburg-Landau prescription in the mass term of the Hamiltonian, this model can be interpreted as describing a first-order phase transition for a system in a region of the D-dimensional space, limited by d pairs of parallel planes, orthogonal to the coordinates axis x(1), x(2),..., x(d). The planes in each pair are separated by distances L-1, L-2, ... , L-d. We obtain an expression for the transition temperature as a function of the size of the system, T-c({L-i}), i = 1, 2, ..., d. For D = 3 we particularize this formula, taking L-1 = L-2 = ... = L-d = L for the physically interesting cases d = 1 (a film), d = 2 (an infinitely long wire having a square cross-section), and for d = 3 (a cube). For completeness, the corresponding formulas for second-order transitions are also presented. Comparison with experimental data for superconducting films and wires shows qualitative agreement with our theoretical expressions.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Anelastic spectroscopy measurements (internal friction) are sensitive tools for the study of defects in solids, in particular the mobility of interstitial oxygen. Samples of Bi2Sr2CaCu2Oy were analyzed after being submitted to two thermal treatments in vacuum, one at 973 K and another at 673 K. Anelastic spectroscopy measurements were performed using a torsion pendulum operating at around 38 Hz and at a temperature range of 88 and 700 K with heating rate of 1 K/min and vacuum better than 10(-5) Torr. Complex relaxation structures reversible with new thermal treatments were observed. These relaxation structures were attributed to O-M structural phase transitions. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The method of the fourth-order cumulant of Challa, Landau, and Binder is used together with the Monte Carlo histogram technique of Ferrenberg and Swendsen to study the order of the phase transitions of two-dimensional Ising systems with multispin interactions in the horizontal direction and two-body interactions in the vertical direction.
Resumo:
The models of translationally invariant infinite nuclear matter in the relativistic mean field models are very interesting and simple, since the nucleon can connect only to a constant vector and scalar meson field. Can one connect these to the complicated phase transitions of QCD? For an affirmative answer to this question, one must consider models where the coupling contstants to the scalar and vector fields depend on density in a nonlinear way, since as such the models are not explicitly chirally invariant. Once this is ensured, indeed one can derive a quark condensate indirectly from the energy density of nuclear matter which goes to zero at large density and temperature. The change to zero condensate indicates a smooth phase transition. © Springer-Verlag 1996.
Resumo:
Differential scanning calorimetry (DSC) studies were performed for 60/40 P(VDF-TrFE). The results not only confirm the importance of thermal history but also show that the samples with various configurations in terms of ferroelectric phases can be obtained via thermal treatment.